-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# %% | ||
import numpy as np | ||
import scipy.spatial | ||
import scipy.signal | ||
import scipy.stats | ||
|
||
import multiSyncPy as msp | ||
from multiSyncPy import synchrony_metrics as sm | ||
from multiSyncPy import data_generation as dg | ||
|
||
|
||
def get_basic_kuramoto_data(): | ||
np.random.seed(42) | ||
|
||
kuramoto_args = { | ||
"K": 0.5, | ||
"phases": np.array([0, 0.4 * np.pi, 0.8 * np.pi, 1.2 * np.pi, 1.6 * np.pi]), | ||
"omegas": [1.0, 1.5, 2.0, 2.5, 3.0], | ||
"alpha": 0.5, | ||
"d_t": 0.01, | ||
"length": 1000, | ||
} | ||
|
||
return dg.kuramoto_data(**kuramoto_args) | ||
|
||
|
||
def test_coherence(): | ||
assert np.isclose(0.14933899432114464, sm.coherence_team(get_basic_kuramoto_data())) | ||
|
||
|
||
def test_symbolic_entropy(): | ||
assert np.isclose(3.714899711057103, sm.symbolic_entropy(get_basic_kuramoto_data())) | ||
|
||
|
||
def test_rho(): | ||
kuramoto_test_data_phases = np.angle( | ||
scipy.signal.hilbert(get_basic_kuramoto_data()) | ||
) | ||
assert np.isclose(0.8149785584909867, sm.rho(kuramoto_test_data_phases)[1]) | ||
|
||
|
||
def test_rqa(): | ||
recurrence_matrix = sm.recurrence_matrix(get_basic_kuramoto_data(), radius=0.5) | ||
|
||
assert np.isclose( | ||
(0.019321321321321323, 0.9725417055227438, 11.300936768149883, 999), | ||
sm.rqa_metrics(recurrence_matrix), | ||
).all() | ||
|
||
|
||
def test_kuramoto_weak_null(): | ||
np.random.seed(42) | ||
|
||
kuramoto_test_data_sample = np.tile( | ||
get_basic_kuramoto_data(), (100, 1, 1) | ||
) + np.random.normal(0, 0.1, (100, 5, 1000)) | ||
|
||
kuramoto_test_data_sample = np.angle( | ||
scipy.signal.hilbert(kuramoto_test_data_sample) | ||
) | ||
|
||
assert np.isclose( | ||
(1.9527624051998052e-217, 1488.230058836042, 99), | ||
sm.kuramoto_weak_null(kuramoto_test_data_sample), | ||
).all() | ||
|
||
|
||
def test_symbolic_entropy_windowed(): | ||
np.random.seed(42) | ||
|
||
kuramoto_args = { | ||
"K": 0.5, | ||
"phases": np.array([0, 0.4 * np.pi, 0.8 * np.pi, 1.2 * np.pi, 1.6 * np.pi]), | ||
"omegas": [1.0, 1.5, 2.0, 2.5, 3.0], | ||
"alpha": 0.5, | ||
"d_t": 0.01, | ||
"length": 10000, | ||
} | ||
|
||
kuramoto_test_data_long = dg.kuramoto_data(**kuramoto_args) | ||
|
||
pattern_entropy_windowed = sm.apply_windowed( | ||
kuramoto_test_data_long, sm.symbolic_entropy, 100 | ||
) | ||
|
||
assert np.isclose( | ||
[2.41807725, 3.23318747, 3.00633523, 2.44619682, 2.14577759], | ||
pattern_entropy_windowed[:5], | ||
).all() | ||
|
||
|
||
def test_rqa_windowed(): | ||
recurrence_func = lambda x: sm.rqa_metrics(sm.recurrence_matrix(x, radius=0.5))[0] | ||
|
||
recurrence_over_time = sm.apply_windowed( | ||
get_basic_kuramoto_data(), recurrence_func, window_length=75, step=25 | ||
) | ||
|
||
assert np.isclose( | ||
[0.07423423, 0.06954955, 0.05225225, 0.03675676, 0.02486486], | ||
recurrence_over_time[:5], | ||
).all() | ||
|
||
|
||
def test_coherence_windowed(): | ||
coherence_over_time = sm.apply_windowed( | ||
get_basic_kuramoto_data(), sm.coherence_team, window_length=75, step=25 | ||
) | ||
|
||
assert np.isclose( | ||
[0.13941338, 0.14107468, 0.14243127, 0.15962883, 0.16160428], | ||
coherence_over_time[:5], | ||
).all() | ||
|
||
|
||
def test_rho_windowed(): | ||
data_phases = np.angle(scipy.signal.hilbert(get_basic_kuramoto_data())) | ||
|
||
rho_func = lambda x: sm.rho(x)[1] | ||
|
||
rho_over_time = sm.apply_windowed(data_phases, rho_func, window_length=75, step=25) | ||
|
||
assert np.isclose( | ||
[0.9582254, 0.98922587, 0.98551124, 0.98389035, 0.97009667], | ||
rho_over_time[:5], | ||
).all() |