-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a4aa019
commit d38b6d0
Showing
57 changed files
with
60,030 additions
and
428 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pathlib import Path\n", | ||
"\n", | ||
"import matplotlib\n", | ||
"import matplotlib.dates as mdates\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import seaborn as sns\n", | ||
"from matplotlib import lines\n", | ||
"from sklearn import metrics\n", | ||
"\n", | ||
"# LaTeX plotting\n", | ||
"matplotlib.use(\"pgf\")\n", | ||
"sns.set_palette(\"Set2\")\n", | ||
"sns.set_context(\"paper\")\n", | ||
"\n", | ||
"plt.rcParams[\"pgf.texsystem\"] = \"pdflatex\"\n", | ||
"plt.rcParams[\"font.family\"] = \"serif\"\n", | ||
"plt.rcParams[\"text.usetex\"] = True\n", | ||
"plt.rcParams[\"pgf.rcfonts\"] = False\n", | ||
"\n", | ||
"plt.rcParams[\"axes.linewidth\"] = 0.5\n", | ||
"plt.rcParams[\"axes.labelsize\"] = 14\n", | ||
"\n", | ||
"plt.rcParams[\"xtick.labelsize\"] = 12\n", | ||
"plt.rcParams[\"xtick.bottom\"] = True\n", | ||
"plt.rcParams[\"xtick.major.size\"] = 5\n", | ||
"plt.rcParams[\"xtick.major.width\"] = 0.5\n", | ||
"plt.rcParams[\"xtick.major.pad\"] = 0.1\n", | ||
"\n", | ||
"plt.rcParams[\"ytick.labelsize\"] = 12\n", | ||
"plt.rcParams[\"ytick.left\"] = True\n", | ||
"plt.rcParams[\"ytick.major.size\"] = 5\n", | ||
"plt.rcParams[\"ytick.major.width\"] = 0.5\n", | ||
"plt.rcParams[\"ytick.major.pad\"] = 0.1\n", | ||
"\n", | ||
"plt.rcParams[\"legend.title_fontsize\"] = 12\n", | ||
"plt.rcParams[\"legend.fontsize\"] = 12\n", | ||
"plt.rcParams[\"legend.handletextpad\"] = 0.3\n", | ||
"plt.rcParams[\"lines.markersize\"] = 0.5\n", | ||
"plt.rcParams[\"savefig.pad_inches\"] = 0.01\n", | ||
"\n", | ||
"INPUT_DIR = Path(\"./paper_artifacts/chain_of_trust/data/plots/\")\n", | ||
"OUTPUT_DIR = Path(\"./results/figures/\")\n", | ||
"INPUT_DIR.mkdir(exist_ok=True, parents=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Average number of transitive references over time" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_to_plot = pd.read_csv(INPUT_DIR / \"avg_refs_over_time.csv\", parse_dates=[\"date\"])\n", | ||
"df_to_plot[\"category\"] = df_to_plot[\"category\"].map(lambda x: \"others\" if x == \"others categories\" else x)\n", | ||
"\n", | ||
"plt.figure()\n", | ||
"g = sns.lineplot(data=df_to_plot, x=\"date\", y=\"n_references\", hue=\"category\", errorbar=None)\n", | ||
"plt.legend(frameon=True, handlelength=2, title=\"Product category\")\n", | ||
"g.set_xlabel(\"\")\n", | ||
"g.set_ylabel(\"Avg. \\# transitive refs.\")\n", | ||
"\n", | ||
"dtFmt = mdates.DateFormatter(\"%Y\")\n", | ||
"g.xaxis.set_major_formatter(dtFmt)\n", | ||
"g.set_xticks(\n", | ||
" [\n", | ||
" pd.to_datetime(\"1998-01-01\"),\n", | ||
" pd.to_datetime(\"2003-01-01\"),\n", | ||
" pd.to_datetime(\"2008-01-01\"),\n", | ||
" pd.to_datetime(\"2013-01-01\"),\n", | ||
" pd.to_datetime(\"2018-01-01\"),\n", | ||
" pd.to_datetime(\"2023-01-01\"),\n", | ||
" ]\n", | ||
")\n", | ||
"g.figure.set_size_inches(3.9, 3)\n", | ||
"plt.tight_layout(pad=0.1)\n", | ||
"g.figure.savefig(OUTPUT_DIR / \"lineplot_avg_refs.pdf\")\n", | ||
"g.figure.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Average reach over time" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_to_plot = pd.read_csv(INPUT_DIR / \"avg_reach_over_time.csv\", parse_dates=[\"date\"])\n", | ||
"\n", | ||
"plt.figure()\n", | ||
"g = sns.lineplot(data=df_to_plot, x=\"date\", y=\"n_references\", hue=\"category\", errorbar=None)\n", | ||
"plt.legend(frameon=True, handlelength=2, title=\"Product category\")\n", | ||
"g.set_xlabel(\"\")\n", | ||
"g.set_ylabel(\"Average certificate reach\")\n", | ||
"dtFmt = mdates.DateFormatter(\"%Y\")\n", | ||
"g.xaxis.set_major_formatter(dtFmt)\n", | ||
"g.set_xticks(\n", | ||
" [\n", | ||
" pd.to_datetime(\"1998-01-01\"),\n", | ||
" pd.to_datetime(\"2003-01-01\"),\n", | ||
" pd.to_datetime(\"2008-01-01\"),\n", | ||
" pd.to_datetime(\"2013-01-01\"),\n", | ||
" pd.to_datetime(\"2018-01-01\"),\n", | ||
" pd.to_datetime(\"2023-01-01\"),\n", | ||
" ]\n", | ||
")\n", | ||
"\n", | ||
"g.figure.set_size_inches(3.9, 3)\n", | ||
"plt.tight_layout(pad=0.1)\n", | ||
"g.figure.savefig(OUTPUT_DIR / \"lineplot_avg_reach.pdf\")\n", | ||
"g.figure.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Area under curve" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.figure(figsize=(2.8, 1.8))\n", | ||
"sns.set_palette(\"Set2\")\n", | ||
"colors = plt.cm.Dark2(np.linspace(0, 1, 8))\n", | ||
"\n", | ||
"df_sent = pd.read_csv(INPUT_DIR / \"df_pred_sentence_transformers.csv\")\n", | ||
"df_tf_idf = pd.read_csv(INPUT_DIR / \"df_pred_tf_idf.csv\")\n", | ||
"df_baseline = pd.read_csv(INPUT_DIR / \"df_pred_baseline.csv\")\n", | ||
"\n", | ||
"fpr, tpr, thresholds = metrics.roc_curve(df_sent.y_true, df_sent.y_pred)\n", | ||
"auc = metrics.roc_auc_score(df_sent.y_true, df_sent.y_pred)\n", | ||
"plt.plot(fpr, tpr, label=f\"Sent. trans. (AUC={auc:.2f})\", color=colors[0])\n", | ||
"\n", | ||
"fpr, tpr, thresholds = metrics.roc_curve(df_tf_idf.y_true, df_tf_idf.y_pred)\n", | ||
"auc = metrics.roc_auc_score(df_tf_idf.y_true, df_tf_idf.y_pred)\n", | ||
"plt.plot(fpr, tpr, label=f\"TF-IDF (AUC={auc:.2f})\", color=colors[1])\n", | ||
"\n", | ||
"fpr, tpr, thresholds = metrics.roc_curve(df_baseline.y_true, df_baseline.y_pred)\n", | ||
"auc = metrics.roc_auc_score(df_baseline.y_true, df_baseline.y_pred)\n", | ||
"with plt.rc_context({\"legend.fontsize\": 8}):\n", | ||
" plt.plot(fpr, tpr, label=f\"Random guess (AUC={auc:.2f})\", color=colors[2])\n", | ||
"\n", | ||
" plt.legend(loc=\"lower right\")\n", | ||
" plt.savefig(OUTPUT_DIR / \"roc_auc.pdf\")\n", | ||
" plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Stack-bar plot of annotations in categories" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = pd.read_csv(INPUT_DIR / \"ref_categories_stackplot.csv\")\n", | ||
"\n", | ||
"ax = df.plot.barh(stacked=True, rot=0, width=0.95)\n", | ||
"ax.set_ylim(-0.6, 2.6)\n", | ||
"ax.set_xlabel(\"\\# references\", fontsize=12)\n", | ||
"ax.set_yticklabels([\"Others\", \"Smartcard-related\", \"Smartcards\"])\n", | ||
"ax.legend(title=\"Reference context\", loc=\"lower right\", frameon=True)\n", | ||
"\n", | ||
"plt.text(0.4, 0.8, df.iloc[2][\"Component reuse\"], transform=ax.transAxes, color=\"white\", fontsize=14)\n", | ||
"plt.text(0.81, 0.8, df.iloc[2][\"Predecessor\"], transform=ax.transAxes, color=\"white\", fontsize=14)\n", | ||
"\n", | ||
"plt.axhline(y=1.21, xmin=0.05, xmax=0.18, color=\"black\", linewidth=0.75)\n", | ||
"plt.axhline(y=0.9, xmin=0.12, xmax=0.18, color=\"black\", linewidth=0.75)\n", | ||
"plt.text(0.2, 0.55, df.iloc[1][\"Component reuse\"], transform=ax.transAxes, color=\"black\", fontsize=14)\n", | ||
"plt.text(0.2, 0.45, df.iloc[1][\"Predecessor\"], transform=ax.transAxes, color=\"black\", fontsize=14)\n", | ||
"\n", | ||
"plt.axhline(y=0.17, xmin=0.02, xmax=0.1, color=\"black\", linewidth=0.75)\n", | ||
"plt.axhline(y=-0.1, xmin=0.05, xmax=0.1, color=\"black\", linewidth=0.75)\n", | ||
"plt.text(0.12, 0.22, df.iloc[0][\"Component reuse\"], transform=ax.transAxes, color=\"black\", fontsize=14)\n", | ||
"plt.text(0.12, 0.13, df.iloc[0][\"Predecessor\"], transform=ax.transAxes, color=\"black\", fontsize=14)\n", | ||
"\n", | ||
"ax.figure.set_size_inches(4, 3)\n", | ||
"plt.tight_layout(pad=0.1)\n", | ||
"plt.savefig(OUTPUT_DIR / \"stacked_barplot.pdf\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Archived certificate half-life" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.figure()\n", | ||
"\n", | ||
"df = pd.read_csv(INPUT_DIR / \"archived_half_life.csv\")\n", | ||
"\n", | ||
"with plt.rc_context({\"legend.fontsize\": 10, \"legend.title_fontsize\": 10}):\n", | ||
" g = sns.ecdfplot(data=df.n_days, complementary=True)\n", | ||
"\n", | ||
" plt.axvline(x=365, color=\"r\", linestyle=\"--\", linewidth=0.75)\n", | ||
" vertical_line = lines.Line2D(\n", | ||
" [], [], color=\"r\", marker=\"\", linestyle=\"--\", markersize=10, markeredgewidth=1.5, label=\"One year\"\n", | ||
" )\n", | ||
" plt.legend(handles=[vertical_line])\n", | ||
"\n", | ||
" g.figure.set_size_inches(3, 2)\n", | ||
" g.set_xlim(0, 2000)\n", | ||
"\n", | ||
" g.set_xlabel(\"Number of days\")\n", | ||
" g.set_ylabel(\"Proportion\")\n", | ||
"\n", | ||
" g.yaxis.set_major_formatter(matplotlib.ticker.PercentFormatter(xmax=1))\n", | ||
" g.set_yticks([0, 0.25, 0.5, 0.75, 1])\n", | ||
"\n", | ||
" plt.tight_layout(pad=0.05)\n", | ||
" g.figure.savefig(OUTPUT_DIR / \"cdf_half_life.pdf\")\n", | ||
" g.figure.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Age of referenced certificate in composite-evaluation products" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.figure()\n", | ||
"\n", | ||
"df = pd.read_csv(INPUT_DIR / \"ecdf_archival_data.csv\")\n", | ||
"df = df.loc[df.scheme.isin({\"FR\", \"DE\", \"NL\"})]\n", | ||
"\n", | ||
"with plt.rc_context({\"legend.fontsize\": 10, \"legend.title_fontsize\": 10}):\n", | ||
" g = sns.ecdfplot(data=df, x=\"date_diff\", hue=\"scheme\", legend=True)\n", | ||
" plt.axvline(x=540, color=\"r\", linestyle=\"--\", linewidth=0.75)\n", | ||
"\n", | ||
" vertical_line = lines.Line2D([], [], color=\"r\", linestyle=\"--\", markersize=10, label=\"18 months\")\n", | ||
" unique_hues = df[\"scheme\"].unique()\n", | ||
" handles = [\n", | ||
" plt.Line2D([], [], color=g.lines[color_idx].get_color(), label=label)\n", | ||
" for color_idx, label in enumerate(unique_hues)\n", | ||
" ]\n", | ||
"\n", | ||
" handles.append(vertical_line)\n", | ||
" labels = list(unique_hues) + [\"18 months\"]\n", | ||
"\n", | ||
" g.legend(handles=handles, labels=labels)\n", | ||
"\n", | ||
" g.figure.set_size_inches(3, 2)\n", | ||
" g.yaxis.set_major_formatter(matplotlib.ticker.PercentFormatter(xmax=1))\n", | ||
" g.set_yticks([0, 0.25, 0.5, 0.75, 1])\n", | ||
" g.set_xlim(0, 2000)\n", | ||
" g.set_xlabel(\"Number of days\")\n", | ||
" g.set_ylabel(\"Proportion\")\n", | ||
" plt.tight_layout(pad=0.05)\n", | ||
" g.figure.savefig(OUTPUT_DIR / \"ref_comp_age.pdf\")\n", | ||
" plt.show()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "venv", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.