-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
96 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,7 @@ | ||
%!test test_sanity() | ||
|
||
%!test test_lrCostFunction() | ||
|
||
%!test test_oneVsAll() | ||
|
||
%!test test_predictOneVsAll() | ||
%!test test_predictOneVsAll() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
function test_lrCostFunction() | ||
tolerance = 1e-3; | ||
|
||
% Test 1, w/ lambda = 3 | ||
% From TA Colin Beckingham, at https://class.coursera.org/ml-005/forum/thread?thread_id=943#post-4593 | ||
theta = [2; 1; -9]; | ||
X = magic(3); | ||
y = [1; -0.2; 3]; | ||
lambda = 3; | ||
|
||
J_exp = 50.971; | ||
grad_exp = [-6.1081 -7.1932 -12.3540]'; % vectors are typically vertical | ||
|
||
[J, grad] = lrCostFunction(theta, X, y, lambda); | ||
assert(J, J_exp, tolerance); | ||
assert(grad, grad_exp, tolerance); | ||
|
||
% Test 2, w/ lambda = 0.1 | ||
% From TA Colin Beckingham, at https://class.coursera.org/ml-005/forum/thread?thread_id=943#post-4666 | ||
theta = [2; 1; -9]; | ||
X = magic(3); | ||
y = [1; -0.2; 3]; | ||
lambda = 0.1; | ||
|
||
J_exp = 11.338; | ||
grad_exp = [-6.1081 -8.1598 -3.6540]'; % vectors are typically vertical | ||
|
||
[J, grad] = lrCostFunction(theta, X, y, lambda); | ||
assert(J, J_exp, tolerance); | ||
assert(grad, grad_exp, tolerance); | ||
|
||
|
||
% basically the same test as test_costfunction_minimal, but with | ||
% varying values for the lambda, and theta cannot be 0 (there would be | ||
% nothing to penalize), and the x0 (ones) vector has been added | ||
epsilon = 1e-4; | ||
|
||
X = [1 1 1; | ||
1 2 2]; % minimal 2D feature matrix | ||
y = [0 1]'; % at least one negative and one positive | ||
theta = [0 1 1]'; % need non-zero values for theta | ||
|
||
J_exp = [1.0725 1.5725 2.0725]; | ||
grad_exp = [ | ||
0.43141 0.43141 0.43141; | ||
0.42241 0.92241 1.42241; | ||
0.42241 0.92241 1.42241; ]; | ||
|
||
% lambda = 0 --> no regularization | ||
[J0, grad0] = lrCostFunction(theta, X, y, 0.0); | ||
[J1, grad1] = lrCostFunction(theta, X, y, 1.0); | ||
[J2, grad2] = lrCostFunction(theta, X, y, 2.0); | ||
assert([J0 J1 J2], J_exp, epsilon); | ||
assert([grad0 grad1 grad2], grad_exp, epsilon); | ||
|
||
% non-zero theta 0, validates that code isn't | ||
% including theta 0 in the regularization term | ||
theta = [1 1 1]'; | ||
|
||
J_exp = [1.5277 2.0277 2.5277]; | ||
grad_exp = [ | ||
0.47294 0.47294 0.47294; | ||
0.46959 0.96959 1.46959; | ||
0.46959 0.96959 1.46959 ]; | ||
|
||
[J0, grad0] = lrCostFunction(theta, X, y, 0.0); | ||
[J1, grad1] = lrCostFunction(theta, X, y, 1.0); | ||
[J2, grad2] = lrCostFunction(theta, X, y, 2.0); | ||
assert([J0 J1 J2], J_exp, epsilon); | ||
assert([grad0 grad1 grad2], grad_exp, epsilon); | ||
|
||
|
||
% https://class.coursera.org/ml-005/forum/thread?thread_id=1425 | ||
[J grad] = lrCostFunction([0.6 0.3 0.2]', [1.1 0.1 1;1.5 1.3 2], [1 1]', 2); | ||
assert(J, 0.32170, epsilon); | ||
assert(grad, [-0.27694 0.18419 -0.10133]', epsilon); | ||
|
||
[J grad] = lrCostFunction([0.6 0.3 0.2]', [1.1 0.1 1;1.5 1.3 2], [1 1]', 0); | ||
assert(J, 0.25670, epsilon); | ||
assert(grad, [-0.27694 -0.11581 -0.30133]', epsilon); | ||
|
||
theta = [0.6 ; 0.3 ; 0.2]; | ||
X = [1.1 0.1 1.0 ; 1.5 1.3 2.0]; | ||
y = [0 ; 0]; | ||
[J grad] = lrCostFunction(theta, X, y, 0.1); | ||
assert(J, 1.5499, epsilon); | ||
assert(grad, [1.02306 0.59919 1.20867]', epsilon); | ||
|
||
[c g] = lrCostFunction([2.3 1.9 0.5]', [0.1 3.1 1.2; 1.8 0.9 0.7; 3.2 -1.4 6.7], [1 2 0]', 0.3); | ||
assert(c, 0.81085, epsilon); | ||
assert(g, [0.46507 -0.57837 2.04833]', epsilon); | ||
|
||
endfunction |