Skip to content

This package contains macros and models to find DAG issues automatically

Notifications You must be signed in to change notification settings

cladden/dbt-project-evaluator

 
 

Repository files navigation

dbt_project_evaluator

This package highlights areas of a dbt project that are misaligned with dbt Labs' best practices. Specifically, this package tests for:

  1. Modeling - your dbt DAG for modeling best practices
  2. Testing - your models for testing best practices
  3. Documentation - your models for documentation best practices
  4. Structure - your dbt project for file structure and naming best practices
  5. Performance - your model materializations for performance best practices

In addition to tests, this package creates the model int_all_dag_relationships which holds information about your DAG in a tabular format and can be queried using SQL in your Warehouse.

Currently, the following adapters are supported:

  • BigQuery
  • Databricks/Spark
  • PostgreSQL
  • Redshift
  • Snowflake
  • DuckDB

Using This Package

Cloning via dbt Package Hub

Check dbt Hub for the latest installation instructions, or read the docs for more information on installing packages.

Additional setup for Databricks/Spark

In your dbt_project.yml, add the following config:

# dbt_project.yml

dispatch:
  - macro_namespace: dbt_utils
    search_order: ['dbt_project_evaluator', 'spark_utils', 'dbt_utils']

This is required because the project currently provides limited support for arrays macros for Databricks/Spark which is not part of spark_utils yet.

How It Works

This package will:

  1. Parse your graph object and write it into your warehouse as a series of models (see models/marts/core)
  2. Create another series of models that each represent one type of misalignment in your project (below you can find a full list of each misalignment and its accompanying model)
  3. Test those models to alert you to the presence of the misalignment

Once you've installed the package, all you have to do is run a dbt build --select package:dbt_project_evaluator!

Each test warning indicates the presence of a type of misalignment. To troubleshoot a misalignment:

  1. Locate the related documentation below
  2. Query the associated model to find the specific instances of the issue within your project
  3. Either fix the issue(s) or customize the package to exclude them

Package Documentation


Rules

Modeling

Direct Join to Source

fct_direct_join_to_source (source) shows each parent/child relationship where a model has a reference to both a model and a source.

Example

int_model_4 is pulling in both a model and a source.

DAG showing a model and a source joining into a new model
Reason to Flag

We highly recommend having a one-to-one relationship between sources and their corresponding staging model, and not having any other model reading from the source. Those staging models are then the ones read from by the other downstream models.

This allows renaming your columns and doing minor transformation on your source data only once and being consistent across all the models that will consume the source data.

How to Remediate

In our example, we would want to:

  1. create a staging model for our source data if it doesn't exist already
  2. and join this staging model to other ones to create our downstream transformation instead of using the source

After refactoring your downstream model to select from the staging layer, your DAG should look like this:

DAG showing two staging models joining into a new model

Downstream Models Dependent on Source

fct_marts_or_intermediate_dependent_on_source (source) shows each downstream model (marts or intermediate) that depends directly on a source node.

Example

fct_model_9, a marts model, builds from source_1.table_5 a source. image

Reason to Flag

We very strongly believe that a staging model is the atomic unit of data modeling. Each staging model bears a one-to-one relationship with the source data table it represents. It has the same granularity, but the columns have been renamed, recast, or usefully reconsidered into a consistent format. With that in mind, if a marts or intermediate type model joins directly to a {{ source() }} node, there likely is a missing model that needs to be added.

How to Remediate

Add the reference to the appropriate staging model to maintain an abstraction layer between your raw data and your downstream data artifacts.

After refactoring your downstream model to select from the staging layer, your DAG should look like this: image

Model Fanout

fct_model_fanout (source) shows all parents with more than 3 direct leaf children. You can set your own threshold for model fanout by overriding the models_fanout_threshold variable. See overriding variables section.

Example

fct_model has three direct leaf children.

A DAG showing three models branching out of a fct model
Reason to Flag

This might indicate some transformations should move to the BI layer, or a common business transformations should be moved upstream.

Exceptions

Some BI tools are better than others at joining and data exploration. For example, with Looker you could end your DAG after marts (i.e. fcts & dims) and join those artifacts together (with a little know how and setup time) to make your reports. For others, like Tableau, model fanouts might be more beneficial, as this tool prefers big tables over joins, so predefining some reports is usually more performant.

To exclude specific cases, check out the instructions in Configuring exceptions to the rules.

How to Remediate

Queries and transformations can move around between dbt and the BI tool, so how do we try to stay effortful in what we decide to put where?

You can think of dbt as our assembly line which produces expected outputs every time.

You can think of the BI layer as the place where we take the items produced from our assembly line to customize them in order to meet our stakeholder's needs.

Your dbt project needs a defined end point! Until the metrics server comes to fruition, you cannot possibly predefine every query or quandary your team might have. So decide as a team where that line is and maintain it.

Multiple Sources Joined

fct_multiple_sources_joined (source) shows each instance where a model references more than one source.

Example

model_1 references two source tables.

A DAG showing two sources feeding into a staging model
Reason to Flag

We very strongly believe that a staging model is the atomic unit of data modeling. Each staging model bears a one-to-one relationship with the source data table it represents. It has the same granularity, but the columns have been renamed, recast, or usefully reconsidered into a consistent format. With that in mind, two {{ source() }} declarations in one staging model likely means we are not being composable enough and there are individual building blocks which could be broken out into their respective models.

Exceptions

Sometimes companies have a bunch of identical sources across systems. When these identical sources will only ever be used collectively, you should union them once and create a staging layer on the combined result.

To exclude specific cases, check out the instructions in Configuring exceptions to the rules.

How to Remediate

In this example specifically, those raw sources, source_1.table_1 and source_1.table_2 should each have their own staging model (stg_model_1 and stg_model_2), as transitional steps, which will then be combined into a new int_model_2. Alternatively, you could keep stg_model_2 and add base__ models as transitional steps.

To fix this, try out the codegen package! With this package you can dynamically generate the SQL for a staging (what they call base) model, which you will use to populate stg_model_1 and stg_model_2 directly from the source data. Create a new model int_model_2. Afterwards, within int_model_2, update your {{ source() }} macros to {{ ref() }} macros and point them to your newly built staging models. If you had type casting, field aliasing, or other simple improvements made in your original stg_model_2 SQL, then attempt to move that logic back to the new staging models instead. This will help colocate those transformations and avoid duplicate code, so that all downstream models can leverage the same set of transformations.

Post-refactor, your DAG should look like this:

A refactored DAG showing two staging models feeding into an intermediate model

or if you want to use base_ models and keep stg_model_2 as is:

A refactored DAG showing two base models feeding into a staging model

Rejoining of Upstream Concepts

fct_rejoining_of_upstream_concepts (source) contains all cases where one of the parent's direct children is ALSO the direct child of ANOTHER one of the parent's direct children. Only includes cases where the model "in between" the parent and child has NO other downstream dependencies.

Example

stg_model_1, int_model_4, and int_model_5 create a "loop" in the DAG. int_model_4 has no other downstream dependencies other than int_model_5.

A DAG showing three resources. A staging model is referenced by both an int model (`int_model_4`) and a second int model (`int_model_5`). `int_model_4` is also being referenced by `int_model_5`. This creates a 'loop' between the staging model, the int model, and the second int model.
Reason to Flag

This could happen for a variety of reasons: Accidentally duplicating some business concepts in multiple data flows, hesitance to touch (and break) someone else’s model, or perhaps trying to snowflake out or modularize everything without awareness of what will help build time.

As a general rule, snowflaking out models in a thoughtful manner allows for concurrency, but in this example nothing downstream can run until int_model_4 finishes, so it is not saving any time in parallel processing by being its own model. Since both int_model_4 and int_model_5 depend solely on stg_model_1, there is likely a better way to write the SQL within one model (int_model_5) and simplify the DAG, potentially at the expense of more rows of SQL within the model.

Exceptions

The one major exception to this would be when using a function from dbt_utils package, such as star or get_column_values, (or similar functions / packages) that require a relation as an argument input. If the shape of the data in the output of stg_model_1 is not the same as what you need for the input to the function within int_model_5, then you will indeed need int_model_4 to create that relation, in which case, leave it.

To exclude specific cases, check out the instructions in Configuring exceptions to the rules.

How to Remediate

Barring jinja/macro/relation exceptions we mention directly above, to resolve this, simply bring the SQL contents from int_model_4 into a CTE within int_model_5, and swap all {{ ref('int_model_4') }} references to the new CTE(s).

Post-refactor, your DAG should look like this:

A refactored DAG removing the 'loop', by folding `int_model_4` into `int_model_5`.

Root Models

fct_root_models (source) shows each model with 0 direct parents, meaning that the model cannot be traced back to a declared source or model in the dbt project.

Example

model_4 has no direct parents

A DAG showing three source tables, each being referenced by a staging model. Each staging model is being referenced by another accompanying model. model_4 is an independent resource not being referenced by any models
Reason to Flag

This likely means that the model (model_4 below) contains raw table references, either to a raw data source, or another model in the project without using the {{ source() }} or {{ ref() }} functions, respectively. This means that dbt is unable to interpret the correct lineage of this model, and could result in mis-timed execution and/or circular references depending on the model’s upstream dependencies.

Exceptions

This behavior may be observed in the case of a manually defined reference table that does not have any dependencies. A good example of this is a dim_calendar table that is generated by the {{ dbt_utils.date_spine() }} macro — this SQL logic is completely self contained, and does not require any external data sources to execute.

To exclude specific cases, check out the instructions in Configuring exceptions to the rules.

How to Remediate

Start by mapping any table references in the FROM clause of the model definition to the models or raw tables that they draw from, and replace those references with the {{ ref() }} if the dependency is another dbt model, or the {{ source() }} function if the table is a raw data source (this may require the declaration of a new source table). Then, visualize this model in the DAG, and refactor as appropriate according to best practices.

Source Fanout

fct_source_fanout (source) shows each instance where a source is the direct parent of multiple resources in the DAG.

Example

source.table_1 has more than one direct child model.

Reason to Flag

Each source node should be referenced by a single model that performs basic operations, such as renaming, recasting, and other light transformations to maintain consistency through out the project. The role of this staging model is to mirror the raw data but align it with project conventions. The staging model should act as a source of truth and a buffer- any model which depends on the data from a given source should reference the cleaned data in the staging model as opposed to referencing the source directly. This approach keeps the code DRY (any light transformations that need to be done on the raw data are performed only once). Minimizing references to the raw data will also make it easier to update the project should the format of the raw data change.

Exceptions

NoSQL databases or heavily nested data sources often have so much info json packed into a table that you need to break one raw data source into multiple base models.

To exclude specific cases, check out the instructions in Configuring exceptions to the rules.

How to Remediate

Create a staging model which references the source and cleans the raw data (e.g. renaming, recasting). Any models referencing the source directly should be refactored to point towards the staging model instead.

After refactoring the above example, the DAG would look something like this:

Staging Models Dependent on Downstream Models

fct_staging_dependent_on_marts_or_intermediate (source) shows each staging model that depends on an intermediate or marts model, as defined by the naming conventions and folder paths specified in your project variables.

Example

stg_model_5, a staging model, builds from fct_model_9 a marts model.

image
Reason to Flag

This likely represents a misnamed file. According to dbt best practices, staging models should only select from source nodes. Dependence on downstream models indicates that this model may need to be either renamed, or reconfigured to only select from source nodes.

How to Remediate

Rename the file in the child column to use to appropriate prefix, or change the models lineage by pointing the staging model to the appropriate {{ source() }}.

After updating the model to use the appropriate {{ source() }} function, your graph should look like this:

image

Staging Models Dependent on Other Staging Models

fct_staging_dependent_on_staging (source) shows each parent/child relationship where models in the staging layer are dependent on each other.

Example

stg_model_2 is a parent of stg_model_4.

A DAG showing stg_model_2 as a parent of stg_model_4.
Reason to Flag

This may indicate a change in naming is necessary, or that the child model should instead reference a source.

How to Remediate

You should either change the model type of the child (maybe to an intermediate or marts model) or change the child's lineage instead reference the appropriate {{ source() }}.

In our example, we might realize that stg_model_4 is actually an intermediate model. We should move this file to the appropriate intermediate directory and update the file name to int_model_4.

Unused Sources

fct_unused_sources (source) shows each source with 0 children.

Example

source.table_4 isn't being referenced.

A DAG showing three sources which are each being referenced by an accompanying staging model, and one source that isn't being referenced at all
Reason to Flag

This represents either a source that you have defined in YML but never brought into a model or a model that was deprecated and the corresponding rows in the source block of the YML file were not deleted at the same time. This simply represents the buildup of cruft in the project that doesn’t need to be there.

How to Remediate

Navigate to the sources.yml file (or whatever your company has called the file) that corresponds to the unused source. Within the YML file, remove the unused table name, along with descriptions or any other nested information.

version: 2

sources:
  - name: some_source
    database: raw
    tables:
      - name: table_1
      - name: table_2
      - name: table_3
      - name: table_4  # <-- remove this line
A refactored DAG showing three sources which are each being referenced by an accompanying staging model

Testing

Missing Primary Key Tests

fct_missing_primary_key_tests (source) lists every model that does not meet the minimum testing requirement of testing primary keys. Any models that does not have both a not_null and unique test configured will be highlighted in this model.

Reason to Flag Tests are assertions you make about your models and other resources in your dbt project (e.g. sources, seeds and snapshots). Defining tests is a great way to confirm that your code is working correctly, and helps prevent regressions when your code changes. Models without proper tests on their grain are a risk to the reliability and scalability of your project.
How to Remediate

Apply a uniqueness test and a not null test to the column that represents the grain of your model in its schema entry. For models that are unique across a combination of columns, we recommend adding a surrogate key column to your model, then applying these tests to that new model. See the surrogate_key macro from dbt_utils for more info!

Additional tests can be configured by applying a generic test in the model's .yml entry or by creating a singular test in the tests directory of you project.

Test Coverage

fct_test_coverage (source) contains metrics pertaining to project-wide test coverage. Specifically, this models measures:

  1. test_coverage_pct: the percentage of your models that have minimum 1 test applied.
  2. test_to_model_ratio: the ratio of the number of tests in your dbt project to the number of models in your dbt project
  3. < model_type >_test_coverage_pct: the percentage of each of your model types that have minimum 1 test applied.

This model will raise a warn error on a dbt build or dbt test if the test_coverage_pct is less than 100%. You can set your own threshold by overriding the test_coverage_target variable. You can adjust your own model types by overriding the model_types variable. See overriding variables section.

Reason to Flag We recommend that every model in your dbt project has tests applied to ensure the accuracy of your data transformations.
How to Remediate

Apply a generic test in the model's .yml entry, or create a singular test in the tests directory of you project.

As explained above, we recommend at a minimum, every model should have not_null and unique tests set up on a primary key.

Documentation

Documentation Coverage

fct_documentation_coverage (source) calculates the percent of enabled models in the project that have a configured description.

This model will raise a warn error on a dbt build or dbt test if the documentation_coverage_pct is less than 100%. You can set your own threshold by overriding the test_coverage_target variable. See overriding variables section.

Reason to Flag Good documentation for your dbt models will help downstream consumers discover and understand the datasets which you curate for them. The documentation for your project includes model code, a DAG of your project, any tests you've added to a column, and more.
How to Remediate

Apply a text description in the model's .yml entry, or create a docs block in a markdown file, and use the {{ doc() }} function in the model's .yml entry.

Tip: We recommend that every model in your dbt project has at minimum a model-level description. This ensures that each model's purpose is clear to other developers and stakeholders when viewing the dbt docs site.

Undocumented Models

fct_undocumented_models (source) lists every model with no description configured.

Reason to Flag Good documentation for your dbt models will help downstream consumers discover and understand the datasets which you curate for them. The documentation for your project includes model code, a DAG of your project, any tests you've added to a column, and more.
How to Remediate

Apply a text description in the model's .yml entry, or create a docs block in a markdown file, and use the {{ doc() }} function in the model's .yml entry.

Tip: We recommend that every model in your dbt project has at minimum a model-level description. This ensures that each model's purpose is clear to other developers and stakeholders when viewing the dbt docs site. Missing documentation should be addressed first for marts models, then for the rest of your project, to ensure that stakeholders in the organization can understand the data which is surfaced to them.

Structure

Model Naming Conventions

fct_model_naming_conventions (source) shows all cases where a model does NOT have the appropriate prefix.

Example

Consider model_8 which is nested in the marts subdirectory:

├── dbt_project.yml
└── models
    ├── marts
        └── model_8.sql

This model should be renamed to either fct_model_8 or dim_model_8.

Reason to Flag Without appropriate naming conventions, a user querying the data warehouse might incorrectly assume the model type of a given relation. In order to explicitly name the model type in the data warehouse, we recommend appropriately prefixing your models in dbt.
Model Type Appropriate Prefixes
Staging stg_
Intermediate int_
Marts fct_ or dim_
Other rpt_
How to Remediate

For each model flagged, ensure the model type is defined and the model name is prefixed appropriately.

Model Directories

fct_model_directories (source) shows all cases where a model is NOT in the appropriate subdirectory:

  • For staging models: The files should be nested in the staging folder of a subfolder that matches their source parent's name.
  • For non-staging models: The files should be nested closest to the folder name that matches their model type.
Example

Consider stg_model_3 which is a staging model for source_2.table_3:

A DAG showing source_2.table_3 as a parent of stg_model_3

But, stg_model_3.sql is inappropriately nested in the subdirectory source_1:

├── dbt_project.yml
└── models
    ├── marts
    └── staging
        └── source_1
            ├── stg_model_3.sql

This file should be moved into the subdirectory source_2:

├── dbt_project.yml
└── models
    ├── marts
    └── staging
        ├── source_1
        └── source_2
            ├── stg_model_3.sql

Consider dim_model_7 which is a marts model but is inappropriately nested closest to the subdirectory intermediate:

├── dbt_project.yml
└── models
    └── marts
        └── intermediate
            ├── dim_model_7.sql

This file should be moved closest to the subdirectory marts:

├── dbt_project.yml
└── models
    └── marts
        ├── dim_model_7.sql

Consider int_model_4 which is an intermediate model but is inappropriately nested closest to the subdirectory marts:

├── dbt_project.yml
└── models
    └── marts
        ├── int_model_4.sql

This file should be moved closest to the subdirectory intermediate:

├── dbt_project.yml
└── models
    └── marts
        └── intermediate
            ├── int_model_4.sql
Reason to Flag

Because we often work with multiple data sources, in our staging directory, we create one subdirectory per source.

├── dbt_project.yml
└── models
    ├── marts
    └── staging
        ├── braintree
        └── stripe

Each staging directory contains:

  • One staging model for each raw source table
  • One .yml file which contains source definitions, tests, and documentation (see Source Directories)
  • One .yml file which contains tests & documentation for models in the same directory (see Test Directories)

This provides for clear repository organization, so that analytics engineers can quickly and easily find the information they need.

We might create additional folders for intermediate models but each file should always be nested closest to the folder name that matches their model type.

├── dbt_project.yml
└── models
    └── marts
        └── fct_model_6.sql
        └── intermediate
            └── int_model_5.sql
How to Remediate

For each resource flagged, move the file from the current_file_path to change_file_path_to.

Source Directories

fct_source_directories (source) shows all cases where a source definition is NOT in the appropriate subdirectory:

Example

Consider source_2.table_3 which is a source_2 source but it had been defined inappropriately in a source.yml file nested in the subdirectory source_1:

├── dbt_project.yml
└── models
    ├── marts
    └── staging
        └── source_1
            ├── source.yml

This definition should be moved into a source.yml file nested in the subdirectory source_2:

├── dbt_project.yml
└── models
    ├── marts
    └── staging
        ├── source_1
        └── source_2
            ├── source.yml
Reason to Flag

Because we often work with multiple data sources, in our staging directory, we create one subdirectory per source.

├── dbt_project.yml
└── models
    ├── marts
    └── staging
        ├── braintree
        └── stripe

Each staging directory contains:

  • One staging model for each raw source table (see Model Directories)
  • One .yml file which contains source definitions, tests, and documentation
  • One .yml file which contains tests & documentation for models in the same directory (see Test Directories)

This provides for clear repository organization, so that analytics engineers can quickly and easily find the information they need.

How to Remediate

For each source flagged, move the file from the current_file_path to change_file_path_to.

Test Directories

fct_test_directories (source) shows all cases where model tests are NOT in the same subdirectory as the corresponding model.

Example

int_model_4 is located within marts/. However, tests for int_model_4 are configured in staging/staging.yml:

├── dbt_project.yml
└── models
    └── marts
        ├── int_model_4.sql
    └── staging
        ├── staging.yml

A new yml file should be created in marts/ which contains all tests and documentation for int_model_4, and for the rest of the models in located in the marts/ directory:

├── dbt_project.yml
└── models
    └── marts
        ├── int_model_4.sql
        ├── marts.yml
    └── staging
        ├── staging.yml
Reason to Flag

Each subdirectory in models/ should contain one .yml file that includes the tests and documentation for all models within the given subdirectory. Keeping your repository organized in this way ensures that folks can quickly access the information they need.

How to Remediate

Move flagged tests from the yml file under current_test_directory to the yml file under change_test_directory_to (create a new yml file if one does not exist).

Performance

Chained View Dependencies

fct_chained_views_dependencies (source) contains models that are dependent on chains of "non-physically-materialized" models (views and ephemerals), highlighting potential cases for improving performance by switching the materialization of model(s) within the chain to table or incremental.

This model will raise a warn error on a dbt build or dbt test if the distance between a given parent and child is greater than or equal to 4. You can set your own threshold for chained views by overriding the chained_views_threshold variable. See overriding variables section.

Example

table_1 depends on a chain of 4 views (view_1, view_2, view_3, and view_4).

dag of chain of 4 views, then a table
Reason to Flag

You may experience a long runtime for a model when it is build on top of a long chain of "non-physically-materialized" models (views and ephemerals). In the example above, nothing is really computed until you get to table_1. At which point, it is going to run the query within view_4, which will then have to run the query within view_3, which will then have the run the query within view_2, which will then have to run the query within view_1. These will all be running at the same time, which creates a long runtime for table_1.

How to Remediate

We can reduce this compilation time by changing the materialization strategy of some key upstream models to table or incremental to keep a minimum amount of compute in memory and preventing nesting of views. If, for example, we change the materialization of view_4 from a view to a table, table_1 will have a shorter runtime as it will have less compilation to do.

The best practice to determine top candidates for changing materialization from view to table:

  • if a view is used downstream my many models, change materialization to table
  • if a view has more complex calculations (window functions, joins between many tables, etc.), change materialization to table

Exposure Parents Materializations

fct_exposure_parents_materializations (source) shows each model that is a direct parent of an exposure and is not materialized as a table in the warehouse.

Example An example exposure with a table parent (fct_model_6) and an ephemeral parent (dim_model_7)

In this case, the parents of exposure_1 are not both materialized as tables -- dim_model_7 is ephemeral, while fct_model_6 is a table. This model would return a record for the dim_model_7 --> exposure_1 relationship.

Reason to Flag

Models that are referenced by an exposure are likely to be used heavily in downstream systems, and therefore need to be performant when queried. This model highlights instances where the models referenced by exposures are not either a table or incremental materialization.

How to Remediate

If necessary, update the materialized configuration on the models returned in fct_exposure_parents_materializations to either table or incremental. This can be done in individual model files using a config block, or for groups of models in your dbt_project.yml file. See the docs on model configurations for more info!


Customization

Disabling Models

If there is a particular model or set of models that you do not want this package to execute, you can disable these models as you would any other model in your dbt_project.yml file

# dbt_project.yml

models:
  dbt_project_evaluator:
    marts:
      tests:
        # disable entire test coverage suite
        +enabled: false
      dag:
        # disable single DAG model
        fct_model_fanout:
          +enabled: false

Overriding Variables

Currently, this package uses different variables to adapt the models to your objectives and naming conventions. They can all be updated directly in dbt_project.yml

Coverage Variables
variable description default
test_coverage_pct the minimum acceptable test coverage percentage 100%
documentation_coverage_pct the minimum acceptable documentation coverage percentage 100%
# dbt_project.yml
# set your test and doc coverage to 75% instead

vars:
  dbt_project_evaluator:
    documentation_coverage_target: 75
    test_coverage_target: 75
DAG Variables
variable description default
models_fanout_threshold threshold for unacceptable model fanout for fct_model_fanout 3 models
# dbt_project.yml
# set your model fanout threshold to 10 instead of 3

vars:
  dbt_project_evaluator:
    models_fanout_threshold: 10
Naming Convention Variables
variable description default
model_types a list of the different types of models that define the layers of your dbt project staging, intermediate, marts, other
staging_folder_name the name of the folder that contains your staging models staging
intermediate_folder_name the name of the folder that contains your intermediate models intermediate
marts_folder_name the name of the folder that contains your marts models marts
staging_prefixes the list of acceptable prefixes for your staging models stg_
intermediate_prefixes the list of acceptable prefixes for your intermediate models int_
marts_prefixes the list of acceptable prefixes for your marts models fct_, dim_
other_prefixes the list of acceptable prefixes for your other models rpt_

The model_types, <model_type>_folder_name, and <model_type>_prefixes variables allow the package to check if models in the different layers are in the correct folders and have a correct prefix in their name. The default model types are the ones we recommend in our dbt Labs Style Guide. If your model types are different, you can update the model_types variable and create new variables for <model_type>_folder_name and/or <model_type>_prefixes.

# dbt_project.yml
# add an additional model type "util"

vars:
  dbt_project_evaluator:
    model_types: ['staging', 'intermediate', 'marts', 'other', 'util']
    util_folder_name: 'util'
    util_prefixes: ['util_']
Performance Variables
variable description default
chained_views_threshold threshold for unacceptable length of chain of views for fct_chained_views_dependencies 4
# dbt_project.yml
# set your chained views threshold to 8 instead of 4

vars:
  dbt_project_evaluator:
    chained_views_threshold: 8
Warehouse Specific Variables
variable description default
max_depth_dag limits the number of looped CTEs when computing the DAG end-to-end for BigQuery and Databricks/Spark compatibility 9

Changing max_depth_dag number to a higher one might prevent the package from running properly on BigQuery and Databricks/Spark.

Configuring exceptions to the rules

While the rules defined in this package are considered best practices, we realize that there might be exceptions to those rules and people might want to exclude given results to get passing tests despite not following all the recommendations.

An example would be excluding all models with names matching with stg_..._unioned from fct_multiple_sources_joined as we might want to union 2 different tables representing the same data in some of our staging models and we don't want the test to fail for those models.

The package offers the ability to define a seed called dbt_project_evaluator_exceptions.csv to list those exceptions we don't want to be reported. This seed must contain the following columns:

  • fct_name: the name of the fact table for which we want to define exceptions (Please note that it is not possible to exclude specific models for all the coverage tests, but there are variables available to configure those to the particular users' needs)
  • column_name: the column name from fct_name we will be looking at to define exceptions
  • id_to_exclude: the values (or like pattern) we want to exclude for column_name
  • comment: a field where people can document why a given exception is legitimate

The following section describes the steps to follow to configure exceptions.

1. Create a new seed

With our previous example, the seed dbt_project_evaluator_exceptions.csv would look like:

fct_name,column_name,id_to_exclude,comment
fct_multiple_sources_joined,child,stg_%_unioned,Models called _unioned can union multiple sources

which looks like the following when loaded in the warehouse

fct_name column_name id_to_exclude comment
fct_multiple_sources_joined child stg_%_unioned Models called _unioned can union multiple sources

2. Deactivate the seed from the original package

Only a single seed can exist with a given name. When using a custom one, we need to deactivate the one from the package by adding the following to our dbt_project.yml

# dbt_project.yml

seeds:
  dbt_project_evaluator:
    dbt_project_evaluator_exceptions:
      +enabled: false

3. Run the seed and the package

We then run both the seed and the package by executing the following command:

dbt build --select package:dbt_project_evaluator dbt_project_evaluator_exceptions

Running this package as a CI check

Once you have addressed all current misalignments in your project (either by fixing them or configuring exceptions), you can use this package as a CI check to ensure code changes don't introduce new misalignments. The setup will vary based on whether you are using dbt Cloud or dbt Core, but the general steps are as follows:

1. Override test severity with an environment variable

By default the tests in this package are configured with "warn" severity, we can override that for our CI jobs with an environment variable:

  1. Create an environment variable to define the appropriate severity for each environment. In dbt Cloud, for example, we can easily create an environment variable DBT_PROJECT_EVALUATOR_SEVERITY that is set to "error" for the Continuous Integration environment and "warn" for all other environments: Creating DBT_PROJECT_EVALUATOR_SEVERITY environment variable in dbt Cloud

Note: It is also possible to use an environment variable for dbt Core, but the actual implementation will depend on how dbt is orchestrated.

  1. Update you project.yml file to override the default severity for all tests in this package:
# dbt_project.yml

tests:
  dbt_project_evaluator:
    +severity: "{{ env_var('DBT_PROJECT_EVALUATOR_SEVERITY', 'warn') }}"

Note: you could follow a similar process to disable the models in this package for your production environment

# dbt_project.yml

models:
  dbt_project_evaluator:
    +enabled: "{{ env_var('ENABLE_DBT_PROJECT_EVALUATOR', 'true') }}"

2. Run this package for each pull request

Now, you can run this package as a step of your CI job/pipeline. In dbt Cloud, for example, you could update the commands of your CI job to:

dbt build --select state:modified+ --exclude package:dbt_project_evaluator
dbt build --select package:dbt_project_evaluator

Or, if you've configured any exceptions, to:

dbt build --select state:modified+ --exclude package:dbt_project_evaluator
dbt build --select package:dbt_project_evaluator dbt_project_evaluator_exceptions

Add commands dbt build --select state:modified+ --exclude package:dbt_project_evaluator && dbt build --select package:dbt_project_evaluator dbt_project_evaluator_exceptions to CI job in dbt Cloud

Note: ensure you have properly set up your dbt Cloud CI job using deferral and a webhook trigger by following this documentation.


Querying the DAG with SQL

The model int_all_dag_relationships (source), created with the package, lists all the dbt nodes (models, exposures, sources, metrics, seeds, snapshots) along with all their dependencies (including indirect ones) and the path between them.

Building additional models and snapshots on top of this model could allow:

  • creating a dashboard that provides
    • a list of all the sources used by a given exposure
    • a list of all the exposures or metrics using a given source
    • the dependencies between different models
  • building metrics/KPIs on top of a dbt project
    • evolution of the number of models over time
    • evolution of the number of metrics and exposures over time
  • getting insights on potential refactoring work
    • looking at the longest "chains" of models in a project
    • reviewing models with many/few direct dependents
    • identifying potential bottlenecks

Limitations

BigQuery and Databricks

BigQuery current support for recursive CTEs is limited and Databricks SQL doesn't support recursive CTEs.

For those Data Warehouses, the model int_all_dag_relationships needs to be created by looping CTEs instead. The number of loops is configured with max_depth_dag and defaulted to 9. This means that dependencies between models of more than 9 levels of separation won't show in the model int_all_dag_relationships but tests on the DAG will still be correct. With a number of loops higher than 9 BigQuery sometimes raises an error saying the query is too complex.


Contributing

If you'd like to add models to flag new areas, please update this README and add an integration test (more details here).

About

This package contains macros and models to find DAG issues automatically

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 100.0%