Rollup plugin that uses pb2zig to translate a Pixel Bender kernel into Zig, then with the help of Zigar's Rollup plugin, compiles the resulting code into WebAssembly. It also provides additional functions for offloading image processing to web workers.
The plugin is Vite-compatible and is designed to work correctly when in serve mode.
npm install --save-dev rollup-plugin-pb2zig
You must install the Zig compiler onto your computer separately. Follow the instructions outlined in the official Getting Started guide. Alternately, you can let ZVM help manage the installation process.
This library assumes that the compiler is in the search path.
The major and minor version numbers of this program correspond to the version of the Zig compiler it's designed for. The current version is 0.13.1. It works with Zig 0.13.0 and is backwards compatible with 0.12.0.
Simple add the plugin to the list of plugins in vite.config.js
:
import { defineConfig } from 'vite'
import React from '@vitejs/plugin-react-swc'
import Pb2Zig from 'rollup-plugin-pb2zig';
export default defineConfig({
plugins: [
React(),
Pb2Zig(),
],
})
By default, processing is performed in the main thread. If your kernel is computationally
intensive, this could lead to an unresponsive user interface. To offload the processing to web
workers, set the webWorker
option to true
:
import { defineConfig } from 'vite'
import React from '@vitejs/plugin-react-swc'
import Pb2Zig from 'rollup-plugin-pb2zig';
export default defineConfig({
plugins: [
React(),
Pb2Zig({ webWorker: true }),
],
})
All you have to do is import createImageData()
from a .pbk file, provide it with an
ImageData object from a canvas along
with parameters specific to the kernel:
import { useState, useRef, useEffect } from 'react'
import { createImageData } from './pbk/crystallize.pbk';
function App() {
const srcCanvasRef = useRef();
const dstCanvasRef = useRef();
function updateDestinationImage() {
const srcCanvas = srcCanvasRef.current;
const dstCanvas = dstCanvasRef.current;
const srcCTX = srcCanvas.getContext('2d', { willReadFrequently: true });
const dstCTX = dstCanvas.getContext('2d');
const { width, height } = srcCanvas;
const srcImageData = srcCTX.getImageData(0, 0, width, height);
const params = { size: 25 };
const dstImageData = createImageData(width, height, srcImageData, params);
dstCTX.putImageData(dstImageData, 0, 0);
}
// ...
}
The code above is for a scenario where web workers aren't used. When the plugin is configured to
use web workers, createImageData()
becomes an async function and it's necessary to use await
on the call:
import { useState, useRef, useEffect } from 'react'
import { createOutput } from './pbk/crystallize.pbk';
export function App() {
const srcCanvasRef = useRef();
const dstCanvasRef = useRef();
async function updateDestinationImage() {
const srcCanvas = srcCanvasRef.current;
const dstCanvas = dstCanvasRef.current;
const srcCTX = srcCanvas.getContext('2d', { willReadFrequently: true });
const dstCTX = dstCanvas.getContext('2d');
const { width, height } = srcCanvas;
const srcImageData = srcCTX.getImageData(0, 0, width, height);
const params = { size: 25 };
const dstImageData = await createImageData(width, height, srcImageData, params);
dstCTX.putImageData(dstImageData, 0, 0);
}
// ...
}
Note that once an ImageData object has been transferred to a web worker, it cannot be used again.
When a kernel requires multiple images as input, you can either place the two in an array:
async function updateDestinationImage() {
const src1Canvas = src1CanvasRef.current;
const src2Canvas = src2CanvasRef.current;
const dstCanvas = dstCanvasRef.current;
const src1CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
const src2CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
const dstCTX = dstCanvas.getContext('2d');
const { width, height } = srcCanvas;
const src1ImageData = src1CTX.getImageData(0, 0, width, height);
const src2ImageData = src2CTX.getImageData(0, 0, width, height);
const params = { size: 25 };
const input = [ src1ImageData, src2ImageData ];
const dstImageData = await createImageData(width, height, input, params);
dstCTX.putImageData(dstImageData, 0, 0);
}
Or specify them by name in an object:
async function updateDestinationImage() {
const src1Canvas = src1CanvasRef.current;
const src2Canvas = src2CanvasRef.current;
const dstCanvas = dstCanvasRef.current;
const src1CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
const src2CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
const dstCTX = dstCanvas.getContext('2d');
const { width, height } = srcCanvas;
const src1ImageData = src1CTX.getImageData(0, 0, width, height);
const src2ImageData = src2CTX.getImageData(0, 0, width, height);
const params = { size: 25 };
const input = { src1: src1ImageData src2: src2ImageData };
const dstImageData = await createImageData(width, height, input, params);
dstCTX.putImageData(dstImageData, 0, 0);
}
For kernels that are computationally intensive, you might wish to speed up the process by spreading
the work across multiple CPU cores. This plugin provides you with a second function for this
purpose: createPartialOutput()
. Given a scanline offset and a scanline count, the function
returns a slice of the output image:
import { useState, useRef, useEffect } from 'react'
import { createPartialOutput, purgeQueue } from './pbk/raytracer.pbk';
export function App() {
const srcCanvasRef = useRef();
const dstCanvasRef = useRef();
const [ params, setParams ] = useState();
function updateDestinationImage() {
const dstCanvas = dstCanvasRef.current;
const { width, height } = dstCanvas;
const dstCTX = dstCanvas.getContext('2d');
const perWorker = Math.ceil(height / 8);
purgeQueue();
for (let i = 0, offset = 0, remaining = height; offset < height; i++, offset += perWorker, remaining -= perWorker) {
const scanlines = Math.min(perWorker, remaining);
createPartialImageData(width, height, offset, scanlines, {}, params).then((data) => {
dstCTX.putImageData(data, 0, offset);
});
}
}
// ...
}
The example above divides the work into 8 chunks. If your computer has 8 cores or more, processing
would commence immediately on all chunks. Otherwise, some chunks would end up in a queue awaiting
the completion of earlier ones. The purgeQueue()
function causes all pending work orders to be
abandoned. Calling it is essential in a situation where the user can make rapid changes to the
kernel parameters.
The maximum number of workers by default equals
navigator.hardwareConcurrency
.
You can change this by calling manageWorkers()
with the setting { maxCount: [number of workers] }
.
By default, workers are kept around after they've completed their task. This makes subsequent
calls to createImageData
or createPartialImageData
much quicker. You may want to release the
workers when the user exits the section of your app using the kernel. You can accomplish this by
calling manageWorkers()
with the setting { keepAlive: false }
:
import { useState, useRef, useEffect } from 'react'
import { createPartialOutput, purgeQueue, manageWorkers } from './pbk/raytracer.pbk';
export function App() {
// ...
useEffect(() => {
// on mount
manageWorkers({ keepAlive: true });
return () => {
// on unmount
manageWorkers({ keepAlive: false });
};
}, []);
}
webWorker
- Offload processing to web workers (default:false
)
The following options are for rollup-plugin-zigar:
optimize
- Optimization level (default:ReleaseSmall
)topLevelAwait
- Use top-level await to wait for compilation of WASM code (default:false
unlesswebWorker
isfalse
)embedWASM
- Embed WASM binary as base64 in JavaScript code (default:false
)omitFunctions
- Exclude all functions and produce no WASM code (default:false
)stripWASM
- Remove extraneous code from WASM binary, including debugging information (default:true
unless optimize isDebug
)keepNames
- Keep names of function in WASM binary when stripping (default:false
)useReadFile
- Enable the use of readFile() to Load WASM file when library is used in Node.js (default:false
)clean
- Remove temporary build folder after building (default:false
)zigPath
- Path to zig compiler command (default:zig
)zigArgs
- Additional compiler arguments (default: ``)cacheDir
- Directory where compiled shared libraries are placed (default:${CWD}/.zigar-cache
)buildDir
- Root directory where temporary build folder are placed (default:${os.tmpdir()}
)