Skip to content

Latest commit

 

History

History
262 lines (210 loc) · 9.53 KB

README.md

File metadata and controls

262 lines (210 loc) · 9.53 KB

rollup-plugin-pb2zig

Rollup plugin that uses pb2zig to translate a Pixel Bender kernel into Zig, then with the help of Zigar's Rollup plugin, compiles the resulting code into WebAssembly. It also provides additional functions for offloading image processing to web workers.

The plugin is Vite-compatible and is designed to work correctly when in serve mode.

Installation

npm install --save-dev rollup-plugin-pb2zig

You must install the Zig compiler onto your computer separately. Follow the instructions outlined in the official Getting Started guide. Alternately, you can let ZVM help manage the installation process.

This library assumes that the compiler is in the search path.

Versioning

The major and minor version numbers of this program correspond to the version of the Zig compiler it's designed for. The current version is 0.13.1. It works with Zig 0.13.0 and is backwards compatible with 0.12.0.

Usage

Configure Vite

Simple add the plugin to the list of plugins in vite.config.js:

import { defineConfig } from 'vite'
import React from '@vitejs/plugin-react-swc'
import Pb2Zig from 'rollup-plugin-pb2zig';

export default defineConfig({
  plugins: [
    React(),
    Pb2Zig(),
  ],
})

By default, processing is performed in the main thread. If your kernel is computationally intensive, this could lead to an unresponsive user interface. To offload the processing to web workers, set the webWorker option to true:

import { defineConfig } from 'vite'
import React from '@vitejs/plugin-react-swc'
import Pb2Zig from 'rollup-plugin-pb2zig';

export default defineConfig({
  plugins: [
    React(),
    Pb2Zig({ webWorker: true }),
  ],
})

Creating output

All you have to do is import createImageData() from a .pbk file, provide it with an ImageData object from a canvas along with parameters specific to the kernel:

import { useState, useRef, useEffect } from 'react'
import { createImageData } from './pbk/crystallize.pbk';

function App() {
  const srcCanvasRef = useRef();
  const dstCanvasRef = useRef();

  function updateDestinationImage() {
    const srcCanvas = srcCanvasRef.current;
    const dstCanvas = dstCanvasRef.current;
    const srcCTX = srcCanvas.getContext('2d', { willReadFrequently: true });
    const dstCTX = dstCanvas.getContext('2d');
    const { width, height } = srcCanvas;
    const srcImageData = srcCTX.getImageData(0, 0, width, height);
    const params = { size: 25 };
    const dstImageData = createImageData(width, height, srcImageData, params);
    dstCTX.putImageData(dstImageData, 0, 0);
  }

  // ...
}

The code above is for a scenario where web workers aren't used. When the plugin is configured to use web workers, createImageData() becomes an async function and it's necessary to use await on the call:

import { useState, useRef, useEffect } from 'react'
import { createOutput } from './pbk/crystallize.pbk';

export function App() {
  const srcCanvasRef = useRef();
  const dstCanvasRef = useRef();

  async function updateDestinationImage() {
    const srcCanvas = srcCanvasRef.current;
    const dstCanvas = dstCanvasRef.current;
    const srcCTX = srcCanvas.getContext('2d', { willReadFrequently: true });
    const dstCTX = dstCanvas.getContext('2d');
    const { width, height } = srcCanvas;
    const srcImageData = srcCTX.getImageData(0, 0, width, height);
    const params = { size: 25 };
    const dstImageData = await createImageData(width, height, srcImageData, params);
    dstCTX.putImageData(dstImageData, 0, 0);
  }

  // ...
}

Note that once an ImageData object has been transferred to a web worker, it cannot be used again.

Using multi-image kernels

When a kernel requires multiple images as input, you can either place the two in an array:

  async function updateDestinationImage() {
    const src1Canvas = src1CanvasRef.current;
    const src2Canvas = src2CanvasRef.current;
    const dstCanvas = dstCanvasRef.current;
    const src1CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
    const src2CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
    const dstCTX = dstCanvas.getContext('2d');
    const { width, height } = srcCanvas;
    const src1ImageData = src1CTX.getImageData(0, 0, width, height);
    const src2ImageData = src2CTX.getImageData(0, 0, width, height);
    const params = { size: 25 };
    const input = [ src1ImageData, src2ImageData ];
    const dstImageData = await createImageData(width, height, input, params);
    dstCTX.putImageData(dstImageData, 0, 0);
  }

Or specify them by name in an object:

  async function updateDestinationImage() {
    const src1Canvas = src1CanvasRef.current;
    const src2Canvas = src2CanvasRef.current;
    const dstCanvas = dstCanvasRef.current;
    const src1CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
    const src2CTX = src1Canvas.getContext('2d', { willReadFrequently: true });
    const dstCTX = dstCanvas.getContext('2d');
    const { width, height } = srcCanvas;
    const src1ImageData = src1CTX.getImageData(0, 0, width, height);
    const src2ImageData = src2CTX.getImageData(0, 0, width, height);
    const params = { size: 25 };
    const input = { src1: src1ImageData src2: src2ImageData };
    const dstImageData = await createImageData(width, height, input, params);
    dstCTX.putImageData(dstImageData, 0, 0);
  }

Processing across multiple web workers

For kernels that are computationally intensive, you might wish to speed up the process by spreading the work across multiple CPU cores. This plugin provides you with a second function for this purpose: createPartialOutput(). Given a scanline offset and a scanline count, the function returns a slice of the output image:

import { useState, useRef, useEffect } from 'react'
import { createPartialOutput, purgeQueue } from './pbk/raytracer.pbk';

export function App() {
  const srcCanvasRef = useRef();
  const dstCanvasRef = useRef();
  const [ params, setParams ] = useState();

  function updateDestinationImage() {
    const dstCanvas = dstCanvasRef.current;
    const { width, height } = dstCanvas;
    const dstCTX = dstCanvas.getContext('2d');
    const perWorker = Math.ceil(height / 8);
    purgeQueue();
    for (let i = 0, offset = 0, remaining = height; offset < height; i++, offset += perWorker, remaining -= perWorker) {
      const scanlines = Math.min(perWorker, remaining);
      createPartialImageData(width, height, offset, scanlines, {}, params).then((data) => {
        dstCTX.putImageData(data, 0, offset);
      });
    }
  }

  // ...
}

The example above divides the work into 8 chunks. If your computer has 8 cores or more, processing would commence immediately on all chunks. Otherwise, some chunks would end up in a queue awaiting the completion of earlier ones. The purgeQueue() function causes all pending work orders to be abandoned. Calling it is essential in a situation where the user can make rapid changes to the kernel parameters.

The maximum number of workers by default equals navigator.hardwareConcurrency. You can change this by calling manageWorkers() with the setting { maxCount: [number of workers] }.

By default, workers are kept around after they've completed their task. This makes subsequent calls to createImageData or createPartialImageData much quicker. You may want to release the workers when the user exits the section of your app using the kernel. You can accomplish this by calling manageWorkers() with the setting { keepAlive: false }:

import { useState, useRef, useEffect } from 'react'
import { createPartialOutput, purgeQueue, manageWorkers } from './pbk/raytracer.pbk';

export function App() {
  // ...

  useEffect(() => {
    // on mount
    manageWorkers({ keepAlive: true });
    return () => {
      // on unmount
      manageWorkers({ keepAlive: false });
    };
  }, []);
}

Plugin options

  • webWorker - Offload processing to web workers (default: false)

The following options are for rollup-plugin-zigar:

  • optimize - Optimization level (default: ReleaseSmall)
  • topLevelAwait - Use top-level await to wait for compilation of WASM code (default: false unless webWorker is false)
  • embedWASM - Embed WASM binary as base64 in JavaScript code (default: false)
  • omitFunctions - Exclude all functions and produce no WASM code (default: false)
  • stripWASM - Remove extraneous code from WASM binary, including debugging information (default: true unless optimize is Debug)
  • keepNames - Keep names of function in WASM binary when stripping (default: false)
  • useReadFile - Enable the use of readFile() to Load WASM file when library is used in Node.js (default: false)
  • clean - Remove temporary build folder after building (default: false)
  • zigPath - Path to zig compiler command (default: zig)
  • zigArgs - Additional compiler arguments (default: ``)
  • cacheDir - Directory where compiled shared libraries are placed (default: ${CWD}/.zigar-cache)
  • buildDir - Root directory where temporary build folder are placed (default: ${os.tmpdir()})

Live demos