-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
440 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .utils import create_model | ||
|
||
__all__ = ['create_model'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
import torch | ||
import torchvision | ||
#from torchvision.models.utils import load_state_dict_from_url | ||
from torch import Tensor | ||
import torch.nn as nn | ||
from torch.hub import load_state_dict_from_url | ||
from typing import Type, Any, Callable, Union, List, Optional | ||
|
||
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | ||
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', | ||
'wide_resnet50_2', 'wide_resnet101_2'] | ||
|
||
|
||
model_urls = { | ||
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | ||
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | ||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | ||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | ||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | ||
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', | ||
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', | ||
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', | ||
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', | ||
} | ||
|
||
|
||
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1): | ||
"""3x3 convolution with padding""" | ||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | ||
padding=dilation, groups=groups, bias=False, dilation=dilation) | ||
|
||
def conv1x1(in_planes: int, out_planes: int, stride: int = 1): | ||
"""1x1 convolution""" | ||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion: int = 1 | ||
|
||
def __init__( | ||
self, | ||
inplanes: int, | ||
planes: int, | ||
stride: int = 1, | ||
downsample: Optional[nn.Module] = None, | ||
groups: int = 1, | ||
base_width: int = 64, | ||
dilation: int = 1, | ||
norm_layer: Optional[Callable[..., nn.Module]] = None | ||
): | ||
super(BasicBlock, self).__init__() | ||
if norm_layer is None: | ||
norm_layer = nn.BatchNorm2d | ||
if groups != 1 or base_width != 64: | ||
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | ||
if dilation > 1: | ||
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | ||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | ||
self.conv1 = conv3x3(inplanes, planes, stride) | ||
self.bn1 = norm_layer(planes) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.conv2 = conv3x3(planes, planes) | ||
self.bn2 = norm_layer(planes) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x: Tensor): | ||
identity = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
|
||
out += identity | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) | ||
# while original implementation places the stride at the first 1x1 convolution(self.conv1) | ||
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. | ||
# This variant is also known as ResNet V1.5 and improves accuracy according to | ||
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. | ||
|
||
expansion: int = 4 | ||
|
||
def __init__( | ||
self, | ||
inplanes: int, | ||
planes: int, | ||
stride: int = 1, | ||
downsample: Optional[nn.Module] = None, | ||
groups: int = 1, | ||
base_width: int = 64, | ||
dilation: int = 1, | ||
norm_layer: Optional[Callable[..., nn.Module]] = None | ||
): | ||
super(Bottleneck, self).__init__() | ||
if norm_layer is None: | ||
norm_layer = nn.BatchNorm2d | ||
width = int(planes * (base_width / 64.)) * groups | ||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | ||
self.conv1 = conv1x1(inplanes, width) | ||
self.bn1 = norm_layer(width) | ||
self.conv2 = conv3x3(width, width, stride, groups, dilation) | ||
self.bn2 = norm_layer(width) | ||
self.conv3 = conv1x1(width, planes * self.expansion) | ||
self.bn3 = norm_layer(planes * self.expansion) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x: Tensor): | ||
identity = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
|
||
out += identity | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
block: Type[Union[BasicBlock, Bottleneck]], | ||
layers: List[int], | ||
num_classes: int = 81, | ||
zero_init_residual: bool = False, | ||
groups: int = 1, | ||
width_per_group: int = 64, | ||
replace_stride_with_dilation: Optional[List[bool]] = None, | ||
norm_layer: Optional[Callable[..., nn.Module]] = None | ||
): | ||
super(ResNet, self).__init__() | ||
if norm_layer is None: | ||
norm_layer = nn.BatchNorm2d | ||
self._norm_layer = norm_layer | ||
|
||
self.inplanes = 64 | ||
self.dilation = 1 | ||
if replace_stride_with_dilation is None: | ||
# each element in the tuple indicates if we should replace | ||
# the 2x2 stride with a dilated convolution instead | ||
replace_stride_with_dilation = [False, False, False] | ||
if len(replace_stride_with_dilation) != 3: | ||
raise ValueError("replace_stride_with_dilation should be None " | ||
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | ||
self.groups = groups | ||
self.base_width = width_per_group | ||
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, | ||
bias=False) | ||
self.bn1 = norm_layer(self.inplanes) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1 = self._make_layer(block, 64, layers[0]) | ||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, | ||
dilate=replace_stride_with_dilation[0]) | ||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, | ||
dilate=replace_stride_with_dilation[1]) | ||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, | ||
dilate=replace_stride_with_dilation[2]) | ||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||
self.fc = nn.Linear(512 * block.expansion, num_classes) | ||
|
||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | ||
nn.init.constant_(m.weight, 1) | ||
nn.init.constant_(m.bias, 0) | ||
|
||
# Zero-initialize the last BN in each residual branch, | ||
# so that the residual branch starts with zeros, and each residual block behaves like an identity. | ||
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | ||
if zero_init_residual: | ||
for m in self.modules(): | ||
if isinstance(m, Bottleneck): | ||
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] | ||
elif isinstance(m, BasicBlock): | ||
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] | ||
|
||
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, | ||
stride: int = 1, dilate: bool = False): | ||
norm_layer = self._norm_layer | ||
downsample = None | ||
previous_dilation = self.dilation | ||
if dilate: | ||
self.dilation *= stride | ||
stride = 1 | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
conv1x1(self.inplanes, planes * block.expansion, stride), | ||
norm_layer(planes * block.expansion), | ||
) | ||
|
||
layers = [] | ||
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, | ||
self.base_width, previous_dilation, norm_layer)) | ||
self.inplanes = planes * block.expansion | ||
for _ in range(1, blocks): | ||
layers.append(block(self.inplanes, planes, groups=self.groups, | ||
base_width=self.base_width, dilation=self.dilation, | ||
norm_layer=norm_layer)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def _forward_impl(self, x: Tensor): | ||
# See note [TorchScript super()] | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
|
||
x = self.layer1(x) | ||
x = self.layer2(x) | ||
x = self.layer3(x) | ||
x = self.layer4(x) | ||
|
||
x = self.avgpool(x) | ||
feature = torch.flatten(x, 1) | ||
x = self.fc(feature) | ||
|
||
return x,feature | ||
|
||
def forward(self, x: Tensor): | ||
return self._forward_impl(x) | ||
|
||
|
||
def _resnet( | ||
arch: str, | ||
block: Type[Union[BasicBlock, Bottleneck]], | ||
layers: List[int], | ||
pretrained: bool, | ||
progress: bool, | ||
num_classes: int, | ||
**kwargs: Any | ||
): | ||
model = ResNet(block, layers, **kwargs , num_classes=num_classes) | ||
print('num_classes = ',num_classes) | ||
if pretrained: | ||
print('model use imagenet pretained!') | ||
loaded_state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) | ||
#state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) | ||
del (loaded_state_dict['fc.weight']) | ||
del (loaded_state_dict['fc.bias']) | ||
state_dict = model.state_dict() | ||
for k in state_dict.keys(): | ||
if k in loaded_state_dict: | ||
state_dict[k] = loaded_state_dict[k] | ||
model.load_state_dict(state_dict) | ||
return model | ||
|
||
|
||
def resnet18(pretrained: bool = False, progress: bool = True, num_classes:int=None ,**kwargs): | ||
r"""ResNet-18 model from | ||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet | ||
progress (bool): If True, displays a progress bar of the download to stderr | ||
""" | ||
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,num_classes, | ||
**kwargs) | ||
|
||
|
||
|
||
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs): | ||
r"""ResNet-34 model from | ||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet | ||
progress (bool): If True, displays a progress bar of the download to stderr | ||
""" | ||
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, | ||
**kwargs) | ||
|
||
|
||
|
||
def resnet50(pretrained: bool = False, progress: bool = True, num_classes: int=None , **kwargs): | ||
r"""ResNet-50 model from | ||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet | ||
progress (bool): If True, displays a progress bar of the download to stderr | ||
""" | ||
if pretrained == True: | ||
print("**********************************") | ||
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,num_classes, | ||
**kwargs) | ||
|
||
|
||
###guagua False-True | ||
def resnet101(pretrained: bool = True, progress: bool = True,num_classes:int=None , **kwargs): | ||
r"""ResNet-101 model from | ||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet | ||
progress (bool): If True, displays a progress bar of the download to stderr | ||
""" | ||
if pretrained == True: | ||
print("**********************************") | ||
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,num_classes, | ||
**kwargs) | ||
|
||
|
||
# if __name__ == "__main__": | ||
# #state_dict = torch.hub.load_state_dict_from_url('https://download.pytorch.org/models/resnet18-f37072fd.pth') | ||
# | ||
# a = torch.rand(1,3,224,224) | ||
# | ||
# model = resnet101(pretrained=True) | ||
# output = model(a) | ||
# print(output.shape) |
Oops, something went wrong.