Skip to content

Latest commit

 

History

History
2987 lines (2078 loc) · 184 KB

awesome_paper.md

File metadata and controls

2987 lines (2078 loc) · 184 KB

Awesome Transfer Learning Papers

Let's read some awesome transfer learning / domain adaptation papers.

Here, we list some papers by topic. For list by date, please refer to papers by date.

这里收录了迁移学习各个研究领域的最新文章。

Survey

Large models

  • ICLR'24-spotlight Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks [arxiv]

    • Noisy model learning: fine-tuning to supress the bad effect of noisy pretraining data 通过使用轻量级finetune减少噪音预训练数据对下游任务的影响
  • ZooPFL: Exploring Black-box Foundation Models for Personalized Federated Learning [arxiv]

    • Black-box foundation models for personalized federated learning 黑盒的blackbox模型进行个性化迁移学习
  • IJCV'23 Exploring Vision-Language Models for Imbalanced Learning [arxiv] [code]

    • Explore vision-language models for imbalanced learning 探索视觉大模型在不平衡问题上的表现
  • ICCV'23 Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning [arxiv] [code]

    • 达到对抗鲁棒性和泛化能力的trade off
  • Towards Realistic Unsupervised Fine-tuning with CLIP [arxiv]

    • Unsupervised fine-tuning of CLIP

Theory

Per-training/Finetuning

Knowledge distillation


Traditional domain adaptation

Deep domain adaptation


Domain generalization

Survey

Tutorial

  • KDD 2023 tutorial: trustworthy machine learning: robustness, generalization, and interpretability [link]

  • WSDM-23 and IJCAI-22 A tutorial on domain generalization [link] | [website]

    • A tutorial on domain generalization

Papers

  • ICASSP'24 Test-time Distribution Learning Adapter for Cross-modal Visual Reasoning [arxiv]

    • Test-time distribution learning adapter
  • A Study on Domain Generalization for Failure Detection through Human Reactions in HRI [arxiv]

    • Domain generalization for failure detection through human reactions in HRI
  • ICLR'24 Towards Robust Out-of-Distribution Generalization Bounds via Sharpness [arxiv]

    • Robust OOD generalization bounds
  • Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy [arxiv]

    • OOD detection for ablated learned temperature energy
  • ICLR'24 Supervised Knowledge Makes Large Language Models Better In-context Learners [arxiv]

    • Small models help large language models for better OOD 用小模型帮助大模型进行更好的OOD
  • NeurIPS'23 Test-Time Distribution Normalization for Contrastively Learned Visual-language Models [paper]

    • Test-time distribution normalization for contrastively learned VLM
  • NeurIPS'23 A Closer Look at the Robustness of Contrastive Language-Image Pre-Training (CLIP) [paper]

    • A fine-gained analysis of CLIP robustness
  • NeurIPS'23 CODA: Generalizing to Open and Unseen Domains with Compaction and Disambiguation [arxiv]

    • Open set domain generalization using extra classes
  • CPAL'24 FIXED: Frustratingly Easy Domain Generalization with Mixup [arxiv]

    • Easy domain generalization with mixup
  • SDM'24 Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution [arxiv]

    • Optimization and model selection for domain generalization
  • Leveraging SAM for Single-Source Domain Generalization in Medical Image Segmentation [arxiv]

    • SAM for single-source domain generalization
  • Open Domain Generalization with a Single Network by Regularization Exploiting Pre-trained Features [arxiv]

    • Open domain generalization with a single network 用单一网络结构进行开放式domain generalizaition
  • Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation [arxiv]

    • Using vision foundation models for domain genealized semantic segmentation 用视觉基础模型进行域泛化语义分割
  • On the Out-Of-Distribution Robustness of Self-Supervised Representation Learning for Phonocardiogram Signals [arxiv]

    • OOD robustness for self-supervised learning for phonocardiogram 心音图信号自监督的OOD鲁棒性
  • A2XP: Towards Private Domain Generalization [arxiv]

    • Private domain generalization 隐私保护的domain generalization
  • Layer-wise Auto-Weighting for Non-Stationary Test-Time Adaptation [arxiv]

    • Auto-weighting for test-time adaptation 自动权重的TTA
  • Domain Generalization by Learning from Privileged Medical Imaging Information [arxiv]

    • Domain generalizaiton by learning from privileged medical imageing inforamtion
  • SSL-DG: Rethinking and Fusing Semi-supervised Learning and Domain Generalization in Medical Image Segmentation [arxiv]

    • Semi-supervised learning + domain generalization 把半监督和领域泛化结合在一起
  • WACV'24 Learning Class and Domain Augmentations for Single-Source Open-Domain Generalization [arxiv]

    • Class and domain augmentation for single-source open-domain DG 结合类和domain增强做单源DG
  • Robust Fine-Tuning of Vision-Language Models for Domain Generalization [arxiv]

    • Robust fine-tuning for domain generalization 用于领域泛化的鲁棒微调
  • NeurIPS 2023 Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models [arxiv]

    • Distill OOD robustness from vision-language foundational models 从VLM模型中蒸馏出OOD鲁棒性
  • UbiComp 2024 Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition [arxiv]

    • Test-time adaptation for activity recognition 测试时adaptation用于行为识别
  • Prompting-based Efficient Temporal Domain Generalization [arxiv]

    • Prompt based temporal domain generalization 基于prompt的时间域domain generalization
  • Domain Generalization with Fourier Transform and Soft Thresholding [arxiv]

    • Domain generalization with Fourier transform 基于傅里叶变换和软阈值进行domain generalization
  • Multi-Scale and Multi-Layer Contrastive Learning for Domain Generalization [arxiv]

    • Multi-scale and multi-layer contrastive learning for DG 多尺度和多层对比学习用于DG
  • Exploring the Transfer Learning Capabilities of CLIP in Domain Generalization for Diabetic Retinopathy [arxiv]

    • Domain generalization for diabetic retinopathy 用领域泛化进行糖尿病视网膜病
  • NormAUG: Normalization-guided Augmentation for Domain Generalization [arxiv]

    • Normalization augmentation for domain generalization
  • Benchmarking Algorithms for Federated Domain Generalization [arxiv]

    • Benchmark algorthms for federated domain generalization 对联邦域泛化算法进行的benchmark
  • DISPEL: Domain Generalization via Domain-Specific Liberating [arxiv]

    • Domain generalization via domain-specific liberating
  • Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain Generalization [arxiv]

    • Exemplar-based style synthesis for domain generalization 样例格式合成用于DG
  • Pruning for Better Domain Generalizability [arxiv]

    • Using pruning for better domain generalization 使用剪枝操作进行domain generalization
  • TMLR'23 Generalizability of Adversarial Robustness Under Distribution Shifts [openreview]

    • Evaluate the OOD perormance of adversarial training 评测对抗训练模型的OOD鲁棒性
  • Domain Generalization for Domain-Linked Classes [arxiv]

    • Domain generalization for domain-linked classes
  • Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup [arxiv]

    • Why mixup works for domain generalization? 系统性研究为啥mixup对OOD很work
  • Improved Test-Time Adaptation for Domain Generalization [arxiv]

    • Improved test-time adaptation for domain generalization
  • Reweighted Mixup for Subpopulation Shift [arxiv]

    • Reweighted mixup for subpopulation shift
  • Domain Generalization with Adversarial Intensity Attack for Medical Image Segmentation [arxiv]

    • Domain generalization for medical segmentation 用domain generalization进行医学分割
  • CVPR'23 Meta-causal Learning for Single Domain Generalization [arxiv]

    • Meta-causal learning for domain generalization
  • Domain Generalization In Robust Invariant Representation [arxiv]

    • Domain generalization in robust invariant representation
  • Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness [arxiv]

    • Local structure preserving for adversarial robustness 通过保留局部结构来进行对抗鲁棒性
  • TFS-ViT: Token-Level Feature Stylization for Domain Generalization [arxiv]

    • Token-level feature stylization for domain generalization 用token-level特征变换进行domain generalization
  • Are Data-driven Explanations Robust against Out-of-distribution Data? [arxiv]

    • Data-driven explanations robust? 探索数据驱动的解释是否是OOD鲁棒的
  • ERM++: An Improved Baseline for Domain Generalization [arxiv]

    • Improved ERM for domain generalization 提高的ERM用于domain generalization
  • Complementary Domain Adaptation and Generalization for Unsupervised Continual Domain Shift Learning [arxiv]

    • Continual domain shift learning using adaptation and generalization 使用 adaptation和DG进行持续分布变化的学习
  • CVPR'23 TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization [arxiv]

    • Improve generalization and adversarial robustness 同时提高鲁棒性和泛化性
  • Finding Competence Regions in Domain Generalization [arxiv]

    • Finding competence regions in domain generalization 在DG中发现能力区域
  • CVPR'23 ALOFT: A Lightweight MLP-like Architecture with Dynamic Low-frequency Transform for Domain Generalization [arxiv]

    • A lightweight module for domain generalization 一个用于DG的轻量级模块
  • CVPR'23 Sharpness-Aware Gradient Matching for Domain Generalization [arxiv]

    • Sharpness-aware gradient matching for DG 利用梯度匹配进行domain generalization
  • Domain Generalization via Nuclear Norm Regularization [arxiv]

    • Domain generalization via nuclear norm regularization 使用核归一化进行domain generalization
  • Imbalanced Domain Generalization for Robust Single Cell Classification in Hematological Cytomorphology [arxiv]

    • Imbalanced domain generalization for single cell classification 不平衡的DG用于单细胞分类
  • FedCLIP: Fast Generalization and Personalization for CLIP in Federated Learning [arxiv]

    • Fast generalization for federated CLIP 在联邦中进行快速的CLIP训练
  • Robust Representation Learning with Self-Distillation for Domain Generalization [arxiv]

    • Robust representation learning with self-distillation
  • ICLR-23 Temporal Coherent Test-Time Optimization for Robust Video Classification [arxiv]

    • Temporal distribution shift in video classification
  • On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective [arxiv] | [code]

    • Adversarial and OOD evaluation of ChatGPT 对ChatGPT鲁棒性的评测
  • How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts? [arxiv]

    • Regression models uncertainty for distribution shift 回归模型对于分布漂移的不确定性
  • ICLR'23 SoftMatch: Addressing the Quantity-Quality Tradeoff in Semi-supervised Learning [arxiv]

    • Semi-supervised learning algorithm 解决标签质量问题的半监督学习方法
  • Empirical Study on Optimizer Selection for Out-of-Distribution Generalization [arxiv]

    • Opimizer selection for OOD generalization OOD泛化中的学习器选择
  • ICML'22 Understanding the failure modes of out-of-distribution generalization [arxiv]

    • Understand the failure modes of OOD generalization 探索OOD泛化中的失败现象
  • ICLR'23 Out-of-distribution Representation Learning for Time Series Classification [arxiv]

    • OOD for time series classification 时间序列分类的OOD算法
  • CLIP the Gap: A Single Domain Generalization Approach for Object Detection [arxiv]

    • Using CLIP for domain generalization object detection 使用CLIP进行域泛化的目标检测
  • TMLR'22 A Unified Survey on Anomaly, Novelty, Open-Set, and Out of-Distribution Detection: Solutions and Future Challenges [openreview]

    • A recent survey on OOD/anomaly detection 一篇最新的关于OOD/anomaly detection的综述
  • NeurIPS'18 A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks [paper]

    • Using class-conditional distribution for OOD detection 使用类条件概率进行OOD检测
  • ICLR'22 Discrete Representations Strengthen Vision Transformer Robustness [arxiv]

    • Embed discrete representation for OOD generalization 在ViT中加入离散表征增强OOD性能
  • Learning to Learn Domain-invariant Parameters for Domain Generalization [[arxiv](Learning to Learn Domain-invariant Parameters for Domain Generalization)]

    • Learning to learn domain-invariant parameters for DG 元学习进行domain generalization
  • HMOE: Hypernetwork-based Mixture of Experts for Domain Generalization [arxiv]

    • Hypernetwork-based ensembling for domain generalization 超网络构成的集成学习用于domain generalization
  • The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [arxiv]

    • OOD using fine-tuning 系统总结了基于fine-tuning进行OOD的一些结果
  • GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective [arxiv]

    • OOD for natural language processing evaluation 提出GLUE-X用于OOD在NLP数据上的评估
  • CVPR'22 Delving Deep Into the Generalization of Vision Transformers Under Distribution Shifts [arxiv]

    • Vision transformers generalization under distribution shifts 评估ViT的分布漂移
  • NeurIPS'22 Models Out of Line: A Fourier Lens on Distribution Shift Robustness [arxiv]

    • A fourier lens on distribution shift robustness 通过傅里叶视角来看分布漂移的鲁棒性
  • Normalization Perturbation: A Simple Domain Generalization Method for Real-World Domain Shifts [arxiv]

    • Normalization perturbation for domain generalization 通过归一化扰动来进行domain generalization
  • FIXED: Frustraitingly easy domain generalization using Mixup [arxiv]

    • 使用Mixup进行domain generalization
  • Learning to Learn Domain-invariant Parameters for Domain Generalization [arxiv]

    • Learning to learn domain-invariant parameters for domain generalization
  • NeurIPS'22 LOG: Active Model Adaptation for Label-Efficient OOD Generalization [openreview]

    • Model adaptation for label-efficient OOD generalization
  • NeurIPS'22 Domain Generalization without Excess Empirical Risk [openreview]

    • Domain generalization without excess empirical risk
  • NeurIPS'22 FedSR: A Simple and Effective Domain Generalization Method for Federated Learning [openreview]

    • FedSR for federated learning domain generalization 用于联邦学习的domain generalization
  • NeurIPS'22 Probable Domain Generalization via Quantile Risk Minimization [openreview]

    • Domain generalization with quantile risk minimization 用quantile风险最小化的domain generalization
  • NeurIPS'22 Your Out-of-Distribution Detection Method is Not Robust! [openreview]

    • OOD models are not robust 分布外泛化模型不够鲁棒
  • PhDthesis Generalizing in the Real World with Representation Learning [arxiv]

    • A phd thesis about generalization in real world 一篇关于现实世界如何做Generalization的博士论文
  • The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [arxiv]

    • Evolution of OOD robustness by fine-tuning
  • Out-of-Distribution Generalization in Algorithmic Reasoning Through Curriculum Learning [arxiv]

    • OOD in algorithmic reasoning 算法reasoning过程中的OOD
  • Towards Out-of-Distribution Adversarial Robustness [arxiv]

    • OOD adversarial robustness OOD对抗鲁棒性
  • TripleE: Easy Domain Generalization via Episodic Replay [arxiv]

    • Easy domain generalization by episodic replay
  • Deep Spatial Domain Generalization [arxiv]

    • Deep spatial domain generalization
  • Assaying Out-Of-Distribution Generalization in Transfer Learning [arXiv]

    • A lot of experiments to show OOD performance
  • ICML-21 Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization [arxiv]

    • Strong correlation between ID and OOD
  • Generalized representations learning for time series classification[arxiv]

    • OOD for time series classification 域泛化用于时间序列分类
  • Language-aware Domain Generalization Network for Cross-Scene Hyperspectral Image Classification [arxiv]

    • Domain generalization for cross-scene hyperspectral image classification 域泛化用于高光谱图像分类
  • Improving Robustness to Out-of-Distribution Data by Frequency-based Augmentation arxiv

    • OOD by frequency-based augmentation 通过基于频率的数据增强进行OOD
  • Domain Generalization for Prostate Segmentation in Transrectal Ultrasound Images: A Multi-center Study arxiv

    • Domain generalizationfor prostate segmentation 领域泛化用于前列腺分割
  • Domain Adaptation from Scratch arxiv

    • Domain adaptation from scratch
  • Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution arxiv

    • Model selection for domain generalization 域泛化中的模型选择问题
  • Equivariant Disentangled Transformation for Domain Generalization under Combination Shift

    • Equivariant disentangled transformation for domain generalization 新的建模domain generalization的思路
  • ECCV-22 workshop Domain-Specific Risk Minimization

    • Domain-specific risk minization for OOD 领域特异性风险最小化用于域泛化
  • IJCAI-22 Domain Generalization through the Lens of Angular Invariance

    • Using angular invariance for domain generalization 使用角度不变性进行domain generalization
  • Adaptive Domain Generalization via Online Disagreement Minimization

    • Online domain generalization via disagreement minimization 在线DG
  • Self-Distilled Vision Transformer for Domain Generalization

    • Vision transformer for domain generalization 用ViT做domain generalization
  • TMLR-22 Domain-invariant Feature Exploration for Domain Generalization

    • Exploring domain-invariant feature for domain generalization 探索领域不变特征在领域泛化中的应用
  • TIST-22 Domain Generalization for Activity Recognition via Adaptive Feature Fusion

    • Domain generalization for activity recognition 领域泛化用于行为识别
  • The Importance of Background Information for Out of Distribution Generalization

    • Background information for OOD generalization 背景信息对于OOD泛化的重要性
  • Causal Balancing for Domain Generalization

    • Causal balancing for domain generalization 因果平衡用于领域泛化
  • Temporal Domain Generalization with Drift-Aware Dynamic Neural Network

    • Temporal domain generalization with drift-aware dynamic neural network 时序域泛化
  • Multiple Domain Causal Networks

    • Mlutiple domain causal networks 多领域的因果网络
  • IJCAI-21 Test-time Fourier Style Calibration for Domain Generalization

    • Test-time calibration for domain generalization 用傅立叶变化进行域泛化的测试时矫正
  • Out-Of-Distribution Detection In Unsupervised Continual Learning

    • OOD detection in unsupervised continual learning 无监督持续学习中进行OOD检测
  • ICLR-22 Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution

    • Fin-tuning and linear probing for ood generalization
    • 先linear probing最后一层再finetune对OOD任务最好
  • ICLR-22 Asymmetry Learning for Counterfactually-invariant Classification in OOD Tasks

    • Asymmetry learning for OOD tasks
    • 非对称学习用于OOD任务
  • Improving Generalization in Federated Learning by Seeking Flat Minima

    • Seeking flat minima for domain generalization in federated learning
    • 通过寻找平坦值进行联邦学习领域泛化
  • Gated Domain-Invariant Feature Disentanglement for Domain Generalizable Object Detection

    • Channel masking for domain generalization object detection
    • 通过一个gate控制channel masking进行object detection DG
  • A Broad Study of Pre-training for Domain Generalization and Adaptation

    • A broad study of pre-training models for DA and DG
    • 大量的实验进行DA和DG
  • Learning Semantic Segmentation from Multiple Datasets with Label Shifts

    • Learning semantic segmentation from many datasets with label shifts
    • 在有标签漂移的情况下从多个数据集中学习语义分割
  • PAKDD-22 Layer Adaptive Deep Neural Networks for Out-of-distribution Detection

    • Layer adaptive network for OOD detection
    • 层自适应的网络进行OOD检测
  • ICLR-22 oral A Fine-Grained Analysis on Distribution Shift

    • Extensive experiments on distribution shift for OOD
    • 大量的实验进行OOD验证
  • ICLR-22 oral Fine-Tuning Distorts Pretrained Features and Underperforms Out-of-Distribution

    • Fine-tuning with linear probing for OOD
    • 微调加上linear probing用于OOD
  • ICLR-22 Uncertainty Modeling for Out-of-Distribution Generalization

    • Uncertainty modeling for OOD generalization
    • 用于分布外泛化的不确定性建模
  • TKDE-22 Adaptive Memory Networks with Self-supervised Learning for Unsupervised Anomaly Detection

    • Adaptiev memory network for anomaly detection
    • 自适应的记忆网络用于异常检测
  • ICIP-22 Meta-Learned Feature Critics for Domain Generalized Semantic Segmentation

    • Meta-learning for domain generalization
    • 元学习用于domain generalization
  • ICIP-22 Few-Shot Classification in Unseen Domains by Episodic Meta-Learning Across Visual Domains

    • Few-shot generalization using meta-learning
    • 用元学习进行小样本的泛化
  • More is Better: A Novel Multi-view Framework for Domain Generalization

    • Multi-view learning for domain generalization
    • 使用多视图学习来进行domain generalization
  • Unsupervised Domain Generalization by Learning a Bridge Across Domains

    • Unsupervised domain generalization
    • 无监督的domain generalization
  • ROBIN : A Benchmark for Robustness to Individual Nuisancesin Real-World Out-of-Distribution Shifts

    • A benchmark for robustness to individual OOD
    • 一个OOD的benchmark
  • ICML-21 workshop Towards Principled Disentanglement for Domain Generalization

    • Principled disentanglement for domain generalization
    • Principled解耦用于domain generalization
  • Federated Learning with Domain Generalization

  • WACV-21 Domain Generalization through Audio-Visual Relative Norm Alignment in First Person Action Recognition

    • Domain generalization by audio-visual alignment
    • 通过音频-视频对齐进行domain generalization
  • Dynamically Decoding Source Domain Knowledge For Unseen Domain Generalization

    • Ensemble learning for domain generalization
    • 用集成学习进行domain generalization
  • Scale Invariant Domain Generalization Image Recapture Detection

    • Scale invariant domain generalizaiton
    • 尺度不变的domain generalization
  • ICCV-21 Shape-Biased Domain Generalization via Shock Graph Embeddings

    • Domain generalization based on shape information
    • 基于形状进行domain generalization
  • Domain and Content Adaptive Convolution for Domain Generalization in Medical Image Segmentation

    • Domain generalization for medical image segmentation
    • 领域泛化用于医学图像分割
  • Fishr: Invariant Gradient Variances for Out-of-distribution Generalization

    • Invariant gradient variances for OOD generalization
    • 不变梯度方差,用于OOD
  • Class-conditioned Domain Generalization via Wasserstein Distributional Robust Optimization

    • Domain generalization with wasserstein DRO
    • 使用Wasserstein DRO进行domain generalization
  • CIKM-21 AdaRNN: Adaptive Learning and Forecasting of Time Series Code 知乎文章 Video

    • A new perspective to using transfer learning for time series analysis
    • 一种新的建模时间序列的迁移学习视角
  • 20190531 arXiv Image Alignment in Unseen Domains via Domain Deep Generalization

    • Deep domain generalization for image alignment
    • 深度领域泛化用于图像对齐
  • 20200821 ECCV-20 Towards Recognizing Unseen Categories in Unseen Domains

    • Recognizing unseen classes in unseen domains
    • 对未知领域识别未知类
  • 20200706 ICLR-21 In Search of Lost Domain Generalization

  • 20201016 Energy-based Out-of-distribution Detection

    • Energy-based OOD
  • 20201222 AAAI-21 DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation

    • OOD generalization
    • 用特征分解和语义增强做OOD泛化
  • 20210106 Style Normalization and Restitution for Domain Generalization and Adaptation

    • Style normalization and restitution for DA and DG
    • 风格归一化用于DA和DG任务
  • CVPR-21 Uncertainty-Guided Model Generalization to Unseen Domains

    • Uncertainty-guided generalization
    • 基于不确定性的domain generalization
  • CVPR-21 Adaptive Methods for Real-World Domain Generalization

    • Adaptive methods for domain generalization
    • 动态算法,用于domain generalization
  • 20180701 arXiv 做迁移时,只用source数据,不用target数据训练:Generalizing to Unseen Domains via Adversarial Data Augmentation

  • 201711 ICLR-18 GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING

    • 不同于以往的工作,本文运用贝叶斯网络建模label和domain的依赖关系,抓住training、inference 两个过程,有效引入domain perturbation来实现domain adaptation。
  • ICLR-18 generalizing across domains via cross-gradient training

  • 20181106 PRCV-18 Domain Attention Model for Domain Generalization in Object Detection

    • Adding attention for domain generalization
    • 在domain generalization中加入了attention机制
  • 20181225 WACV-19 Multi-component Image Translation for Deep Domain Generalization

    • Using GAN generated images for domain generalization
    • 用GAN生成的图像进行domain generalization
  • 20180724 arXiv Domain Generalization via Conditional Invariant Representation

    • Using Conditional Invariant Representation for domain generalization
    • 生成条件不变的特征表达,用于domain generalization问题
  • 20181212 arXiv Beyond Domain Adaptation: Unseen Domain Encapsulation via Universal Non-volume Preserving Models

    • Domain generalization method
    • 一种针对于unseen domain的学习方法
  • 20171210 AAAI-18 Learning to Generalize: Meta-Learning for Domain Generalization

    • 将Meta-Learning与domain generalization结合的文章,可以联系到近期较为流行的few-shot learning进行下一步思考。

Source-free domain adaptation


Multi-source domain adaptation


Heterogeneous transfer learning


Online transfer learning


Zero-shot / few-shot learning


Multi-task learning


Transfer reinforcement learning


Transfer metric learning


Federated transfer learning


Lifelong transfer learning


Safe transfer learning


Transfer learning applications

See HERE for a full list of transfer learning applications.