Skip to content
/ Solid Public

A minimalist interpreted language, with a clean object model and a tiny VM.

License

Notifications You must be signed in to change notification settings

chameco/Solid

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PLEASE DON'T USE THIS IN PRODUCTION

I wrote this when I was 15.

I'm leaving it here because I still think it's pretty neat.

I'd do a lot of things differently today.

I imagine it's riddled with security holes.

If you need something similar, use Lua.

If you need something more specialized, contact me ;).

solid - a minimalist language with a tiny VM

Solid is a simple, elegant language with a very user-friendly C API. Yes, that means you can embed it into your application or game with almost no effort.

See the GitHub page at http://github.com/chameco/solid for source code.

Installation

You'll want Bison (3.0.0), Flex (2.5), and a C compiler (Clang and GCC are tested, because that's what I use, but everything is standard POSIX C99).

The Makefile should automatically fetch any other dependencies.

To tell make where you want it to place the binary, you can set INSTALL_DIR to a directory. Likewise, changing PREFIX_DIR to a directory will modify where make places libs and header files. PREFIX_DIR should contain the sub-directories /share, /lib, and /include.

If not defined, PREFIX_DIR and INSTALL_DIR will default to /usr/local and PREFIX_DIR/bin, respectively.

After you've fiddled with your setup, you can just run:

git clone http://github.com/chameco/solid
cd solid
make && sudo make INSTALL_DIR=/foo/bar install

To uninstall, just run sudo make uninstall from the source directory. If you changed INSTALL_DIR, you'll need to specify that again now.

Usage

To start a REPL just run solid. Running a file is simple: solid test.sol.

Syntax

Assignment: x = 1.

Basic math: 1 + 2, or since operators are just functions, +(1, 2).

Branching: if 1 == 1 print("hello there").

Looping: while 1 == 1 print("solid is still the best").

Blocks: Anywhere you can have a single expression, you can have a block. Blocks start with either do or {, and end with end or }. There are no formal rules about which to use, but I've taken to using do and end on multi-line blocks, and curlies for one-liners. Examples:

c = 0;
while c < 10 do
	print(c);
	c = c + 1;
end;

c = 0;
while c < 10 {print(c); c = c + 1;};

Functions: You can get an anonymous function like so: fn a a * a. Solid is designed so there is only one core language element that has an intrinsic side effect: assignment. Obviously we've been using print, but that's not in the language core, rather it's a function written in C that works just like a normal function. More on that later, but now, let's define a longer function.

f = fn a do
	print(a);
	a * a;
end;

print(f(10));

There is some special syntax for thunks to remove parsing ambiguity. Simply replace the argument list with a tilde (~) to build a thunk.

Recursion: Since all functions are nameless, and the only method of assignment is <identifier> = <expression>, recursion is possible through a $ variable saved inside the function's closure. You'll see in the next example.

Inline functions: If a function only includes symbols in its name, you can call it inline. To derive from the previous example, consider the following.

^ = fn a, b do
    if b == 0 return 1;
    a * $(a, b - 1);
end;

print(10 ^ 2);

Notice the recursion via use of $.

Namespaces: A namespace is just a hash table.

Math = ns do
    ^ = fn a, b do
        if b == 0 return 1;
        a * $(a, b - 1);
    end;
end;

print(Math.^(10, 2));
^ = Math.^;
print(10 ^ 2);

A complete object system based on cloning namespaces is in the works, but right now feel free to call clone with a namespace argument to both derive classes and make instances. Don't worry about the overhead of having copies of functions in instances, as functions are represented as pointers internally.

Lists: Make linked lists with the following syntax: x = ["a", "b", "c", 1, 2, 3]. Index them like so: x !! 1, which would evaluate to "b". Lists are immutable, but you can add items with the cons operator, :. Another example:

x = [2, 3, 4];
print(x !! 0);
y = 1 : x;
print(y !! 0);

Dynamic Evaluation: Dynamically evaluating C code is facilitated by the import function in the standard library. Call import("filename") to load a file. Calling import on a file with a .sol extension will just execute whatever solid code is in that file in the current namespace, returning the result. However, calling it on a shared library (.so, not .so.1) will invoke the foreign function interface. More on that in the next section.

Garbage Collection: It exists in a fairly primitive form. Run either gc() in solid or solid_gc() in C to run a very basic mark-and-sweep garbage collector. It might break things, or it might not. Tread carefully.

Foreign Function Interface and API

Now this is where it gets interesting. Solid exposes a complete C API that allows for incredibly easy embedding. All you really need to know:

  1. To use the API, include <solid/solid.h> and link with -lsolid.

  2. Parse a file or expression into an AST with solid_parse_file(<path>) and solid_parse_expr(<expr>. Example: solid_ast_node *n = solid_parse_expr("1 + 1");

  3. Compile an AST into a function with solid_parse_tree(<ast_node>). Example: solid_object *func = solid_parse_tree(solid_parse_expr("1 + 1"));

  4. Make a virtual machine with solid_make_vm(). Example: solid_vm *vm = solid_make_vm();

  5. Run code on a VM. Example: solid_call_func(vm, func);

  6. Any expression you evaluate in solid puts the result in the return register, accessible at vm->regs[255]. However, this value will be of type solid_object *. To convert to C types, use solid_get_str_value(<object>), solid_get_int_value(<object>), and solid_get_bool_value(<object>).

  7. Convert C primitives to solid objects with solid_str(vm, <string>), solid_int(vm, <integer>), and solid_bool(vm, <integer>).

  8. Use namespaces with solid_get_namespace(<namespace>, <solid_string>) and solid_set_namespace(<namespace>, <solid_string>, <object>). You can get the global namespace by calling solid_get_current_namespace(vm).

  9. Turn a C function with declaration void <function>(solid_vm *vm) into a callable solid object function with solid_define_c_function(vm, <function>). You can access arguments by popping the VM stack (you'll get them in reverse order) with solid_pop_stack(vm), and return a value by setting vm->regs[255].

To put it all together, here's a complete example of embedding solid into a C program:

#include <solid/solid.h>
#include <stdio.h>

void hello_world(solid_vm *vm)
{
    solid_object *argument = solid_pop_stack(vm);
    printf("Howdy, %s!\n", solid_get_str_value(argument));
    vm->regs[255] = solid_int(vm, 1336)
}
int main()
{
    solid_vm *vm = solid_make_vm();
    solid_object *compiled_expr = solid_parse_tree(solid_parse_expr("1 + my_function()"));
    solid_set_namespace(solid_get_current_namespace(vm), solid_str(vm, "my_function"), solid_define_cfunc(vm, hello_world));
    solid_call_func(vm, compiled_expr);
    printf("solid is super %d", solid_get_int_value(vm->regs[255]));
}

But wait, what if you want to use C from inside solid, rather than solid from inside C? Well, you do (almost) the exact same thing. The import function is capable of loading shared libraries with the extension .so. When loaded, solid will call an arbitrary, user-defined function named solid_init with the signature void solid_init(solid_vm *vm) inside the library, passing it the current VM. From there, you can do everything that we did above, defining functions, modifying namespaces, etc. Don't want to go through the trouble to manually build a shared library? Solid has you covered. Just throw your C file whatever.c containing solid_init in the lib folder of the solid source tree, and run make lib TARGET=whatever, and it will create a shared library called whatever.so in the solid source root, which can now be freely imported.

Extras

Programmers using GNU Emacs can load solid-mode, providing basic syntax highlighting and formatting for Solid scripts.

Contributing

Documentation is currently nonexistent outside of this file, but the code is pretty standard object-oriented C99 (generally one main struct per file, "methods" are functions that take a struct pointer as the first argument, everything is allocated with malloc). Start in ast.c and vm.c.

License

Copyright 2013 Samuel Breese. Solid is distributed under the MIT license. See LICENSE.md.

About

A minimalist interpreted language, with a clean object model and a tiny VM.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published