Skip to content

Commit

Permalink
Enable configuration of New Notebook UI (#345)
Browse files Browse the repository at this point in the history
* Enable configuration of New Notebook UI

This commit adds configuration for:
* the default number of GPUs and the GPUs available
* the default PodDefaults selected
* the Toleration configurations available
* the Affinity configurations available

These configurations are enabled through newly exposed charm configs.  These configs are lightly validated to ensure they're valid yaml, but not validated enough to ensure things like Tolerations or Affinities are proper Kubernetes yaml
  • Loading branch information
ca-scribner authored Apr 18, 2024
1 parent 602bcf0 commit 3ec71e9
Show file tree
Hide file tree
Showing 9 changed files with 889 additions and 107 deletions.
71 changes: 71 additions & 0 deletions charms/jupyter-ui/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,3 +41,74 @@ options:
default: |
- kubeflownotebookswg/rstudio-tidyverse:v1.8.0
description: list of image options for RStudio
gpu-number-default:
type: int
default: 0
description: |
The number of GPUs that are selected by default in the New Notebook UI when creating a Notebook.
gpu-vendors:
type: string
default: '[{"limitsKey": "nvidia.com/gpu", "uiName": "NVIDIA"}, {"limitsKey": "amd.com/gpu", "uiName": "AMD"}]'
description: |
The GPU vendors that are selectable by users in the New Notebook UI when creating a Notebook.
Input is in JSON/YAML in the format defined by Kubeflow in:
https://github.com/kubeflow/kubeflow/blob/master/components/crud-web-apps/jupyter/manifests/base/configs/spawner_ui_config.yaml
Each item in the list should have keys:
- limitsKey: the key that corresponds to the GPU vendor resource in Kubernetes
- uiName: the name to be shown in the UI
gpu-vendors-default:
type: string
default: ""
description: |
The GPU vendor that is selected by default in the New Notebook UI when creating a Notebook.
This must be one of the limitsKey values from the gpu-vendors config. Leave as an empty
string to select no GPU vendor by default
affinity-options:
type: string
default: "[]"
description: |
The Affinity configurations that are selectable by users in the New Notebook UI when creating a Notebook.
Input is in JSON/YAML in the format defined by Kubeflow in:
https://github.com/kubeflow/kubeflow/blob/master/components/crud-web-apps/jupyter/manifests/base/configs/spawner_ui_config.yaml
Each item in the list should have keys:
- configKey: an arbitrary key for the configuration
- displayName: the name to be shown in the UI
- affinity: the affinity configuration, as defined by Kubernetes: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
affinity-options-default:
type: string
default: ""
description: |
The Affinity options that is selected by default in the New Notebook UI when creating a Notebook.
This must be one of the configKey values from the affinity-options config. Leave as an empty
string to select no affinity by default
tolerations-options:
type: string
default: "[]"
description: |
The Toleration configurations that are selectable by users in the New Notebook UI when creating a Notebook.
Input is in JSON/YAML in the format defined by Kubeflow in:
https://github.com/kubeflow/kubeflow/blob/master/components/crud-web-apps/jupyter/manifests/base/configs/spawner_ui_config.yaml
Each item in the list should have keys:
- groupKey: an arbitrary key for the configuration
- displayName: the name to be shown in the UI
- tolerations: a list of Kubernetes tolerations, as defined in: https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
tolerations-options-default:
type: string
default: ""
description: |
The Tolerations configuration that is selected by default in the New Notebook UI when creating a Notebook.
This must be one of the groupKey values from the tolerations-options config. Leave as an empty
string to select no tolerations configuration by default
default-poddefaults:
type: string
# The default value allows users to access kfp from their Notebooks automatically
# Added from https://github.com/kubeflow/kubeflow/pull/6160 to fix
# https://github.com/canonical/bundle-kubeflow/issues/423. This was not yet in
# upstream and if they go with something different we should consider syncing with
# upstream.
default: '["access-ml-pipeline"]'
description: |
The PodDefaults that are selected by default in the New Notebook UI when creating a new Notebook.
Inputs is a JSON/YAML list of the names of the PodDefaults.
The New Notebook UI will always show all PodDefaults available to the user - this only defines
which PodDefaults are selected by default.
2 changes: 2 additions & 0 deletions charms/jupyter-ui/requirements-integration.in
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
aiohttp
dpath
# Pinning to <4.0 due to compatibility with the 3.1 controller version
juju<4.0
pytest
pytest-operator
pyyaml
tenacity
4 changes: 4 additions & 0 deletions charms/jupyter-ui/requirements-integration.txt
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,8 @@ decorator==5.1.1
# via
# ipdb
# ipython
dpath==2.1.6
# via -r requirements-integration.in
exceptiongroup==1.1.3
# via pytest
executing==1.2.0
Expand Down Expand Up @@ -170,6 +172,8 @@ six==1.16.0
# python-dateutil
stack-data==0.6.2
# via ipython
tenacity==8.2.3
# via -r requirements-integration.in
tomli==2.0.1
# via
# ipdb
Expand Down
185 changes: 157 additions & 28 deletions charms/jupyter-ui/src/charm.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

import logging
from pathlib import Path
from typing import List
from typing import Union

import yaml
from charmed_kubeflow_chisme.exceptions import ErrorWithStatus
Expand All @@ -26,14 +26,41 @@
from ops.model import ActiveStatus, BlockedStatus, MaintenanceStatus, WaitingStatus
from ops.pebble import ChangeError, Layer
from serialized_data_interface import NoCompatibleVersions, NoVersionsListed, get_interfaces
from yaml import YAMLError

from config_validators import (
ConfigValidationError,
OptionsWithDefault,
parse_gpu_num,
validate_named_options_with_default,
)

K8S_RESOURCE_FILES = [
"src/templates/auth_manifests.yaml.j2",
]
JUPYTER_IMAGES_CONFIG = "jupyter-images"
VSCODE_IMAGES_CONFIG = "vscode-images"
RSTUDIO_IMAGES_CONFIG = "rstudio-images"
JWA_CONFIG_FILE = "src/spawner_ui_config.yaml.j2"
GPU_NUMBER_CONFIG = "gpu-number-default"
GPU_VENDORS_CONFIG = "gpu-vendors"
GPU_VENDORS_CONFIG_DEFAULT = f"{GPU_VENDORS_CONFIG}-default"
AFFINITY_OPTIONS_CONFIG = "affinity-options"
AFFINITY_OPTIONS_CONFIG_DEFAULT = f"{AFFINITY_OPTIONS_CONFIG}-default"
TOLERATIONS_OPTIONS_CONFIG = "tolerations-options"
TOLERATIONS_OPTIONS_CONFIG_DEFAULT = f"{TOLERATIONS_OPTIONS_CONFIG}-default"
DEFAULT_PODDEFAULTS_CONFIG = "default-poddefaults"
JWA_CONFIG_FILE = "src/templates/spawner_ui_config.yaml.j2"

IMAGE_CONFIGS = [
JUPYTER_IMAGES_CONFIG,
VSCODE_IMAGES_CONFIG,
RSTUDIO_IMAGES_CONFIG,
]
DEFAULT_WITH_OPTIONS_CONFIGS = [
GPU_VENDORS_CONFIG,
TOLERATIONS_OPTIONS_CONFIG,
AFFINITY_OPTIONS_CONFIG,
]


class CheckFailed(Exception):
Expand Down Expand Up @@ -213,29 +240,116 @@ def _deploy_k8s_resources(self) -> None:
raise ErrorWithStatus("K8S resources creation failed", BlockedStatus)
self.model.unit.status = MaintenanceStatus("K8S resources created")

def _get_from_config(self, config_key) -> List[str]:
"""Return the yaml value of the config stored in config_key."""
error_message = (
f"Cannot parse user-defined images from config "
f"`{config_key}` - ignoring this input."
)
def _get_from_config(self, key) -> Union[OptionsWithDefault, str]:
"""Load, validate, render, and return the config value stored in self.model.config[key].
Different keys are parsed and validated differently. Errors parsing a config result in
null values being returned and errors being logged - this should not raise an exception on
invalid input.
"""
if key in IMAGE_CONFIGS:
return self._get_list_config(key)
elif key in DEFAULT_WITH_OPTIONS_CONFIGS:
return self._get_options_with_default_from_config(key)
elif key == DEFAULT_PODDEFAULTS_CONFIG:
# parsed the same as image configs
return self._get_list_config(key)
elif key == GPU_NUMBER_CONFIG:
return parse_gpu_num(self.model.config[key])
else:
return self.model.config[key]

def _get_list_config(self, key) -> OptionsWithDefault:
"""Parse and return a config entry which should render to a list, like the image lists.
Returns a OptionsWithDefault with:
.options: the content of the config
.default: the first element of the list
"""
error_message = f"Cannot parse list input from config '{key}` - ignoring this input."
try:
config = yaml.safe_load(self.model.config[config_key])
options = yaml.safe_load(self.model.config[key])

# Empty yaml string, which resolves to None, should be treated as an empty list
if options is None:
options = []

# Check that we receive a list or tuple. This filters out types that can be indexed but
# are not valid for this config (like strings or dicts).
if not isinstance(options, (tuple, list)):
self.logger.warning(
f"{error_message} Input must be a list or empty string. Got: '{options}'"
)
return OptionsWithDefault()

if len(options) > 0:
default = options[0]
else:
default = ""

return OptionsWithDefault(default=default, options=options)
except yaml.YAMLError as err:
self.logger.warning(f"{error_message} Got error: {err}")
return []
return config
return OptionsWithDefault()

def _get_options_with_default_from_config(self, key) -> OptionsWithDefault:
"""Return the input config for a config specified by a list of options and their default.
This is for options like the affinity, gpu, or tolerations options which consist of a list
of options dicts and a separate config specifying their default value.
This function handles any config parsing or validation errors, logging details and returning
and empty result in case of errors.
def _render_jwa_file_with_images_config(
self, jupyter_images_config, vscode_images_config, rstudio_images_config
Returns a OptionsWithDefault with:
.options: the content of this config
.default: the option selected by f'{key}-default'
"""
default_key = f"{key}-default"
try:
default = self.model.config[default_key]
options = self.model.config[key]
options = yaml.safe_load(options)
# Convert anything empty to an empty list
if not options:
options = []
validate_named_options_with_default(default, options, name=key)
return OptionsWithDefault(default=default, options=options)
except (YAMLError, ConfigValidationError) as e:
self.logger.warning(f"Failed to parse {key} config:\n{e}")
return OptionsWithDefault()

@staticmethod
def _render_jwa_spawner_inputs(
jupyter_images_config: OptionsWithDefault,
vscode_images_config: OptionsWithDefault,
rstudio_images_config: OptionsWithDefault,
gpu_number_default: str,
gpu_vendors_config: OptionsWithDefault,
affinity_options_config: OptionsWithDefault,
tolerations_options_config: OptionsWithDefault,
default_poddefaults_config: OptionsWithDefault,
):
"""Render the JWA configmap template with the user-set images in the juju config."""
environment = Environment(loader=FileSystemLoader("."))
# Add a filter to render yaml with proper formatting
environment.filters["to_yaml"] = _to_yaml
template = environment.get_template(JWA_CONFIG_FILE)
content = template.render(
jupyter_images=jupyter_images_config,
vscode_images=vscode_images_config,
rstudio_images=rstudio_images_config,
jupyter_images=jupyter_images_config.options,
jupyter_images_default=jupyter_images_config.default,
vscode_images=vscode_images_config.options,
vscode_images_default=vscode_images_config.default,
rstudio_images=rstudio_images_config.options,
rstudio_images_default=rstudio_images_config.default,
gpu_number_default=gpu_number_default,
gpu_vendors=gpu_vendors_config.options,
gpu_vendors_default=gpu_vendors_config.default,
affinity_options=affinity_options_config.options,
affinity_options_default=affinity_options_config.default,
tolerations_options=tolerations_options_config.options,
tolerations_options_default=tolerations_options_config.default,
default_poddefaults=default_poddefaults_config.options,
)
return content

Expand All @@ -247,17 +361,27 @@ def _upload_jwa_file_to_container(self, file_content):
make_dirs=True,
)

def _update_images_selector(self):
def _update_spawner_ui_config(self):
"""Update the images options that can be selected in the dropdown list."""
# get config
jupyter_images = self._get_from_config(JUPYTER_IMAGES_CONFIG)
vscode_images = self._get_from_config(VSCODE_IMAGES_CONFIG)
rstusio_images = self._get_from_config(RSTUDIO_IMAGES_CONFIG)
jupyter_images_config = self._get_from_config(JUPYTER_IMAGES_CONFIG)
vscode_images_config = self._get_from_config(VSCODE_IMAGES_CONFIG)
rstusio_images_config = self._get_from_config(RSTUDIO_IMAGES_CONFIG)
gpu_number_default = self._get_from_config(GPU_NUMBER_CONFIG)
gpu_vendors_config = self._get_from_config(GPU_VENDORS_CONFIG)
affinity_options_config = self._get_from_config(AFFINITY_OPTIONS_CONFIG)
tolerations_options_config = self._get_from_config(TOLERATIONS_OPTIONS_CONFIG)
default_poddefaults = self._get_from_config(DEFAULT_PODDEFAULTS_CONFIG)
# render the jwa file
jwa_content = self._render_jwa_file_with_images_config(
jupyter_images_config=jupyter_images,
vscode_images_config=vscode_images,
rstudio_images_config=rstusio_images,
jwa_content = self._render_jwa_spawner_inputs(
jupyter_images_config=jupyter_images_config,
vscode_images_config=vscode_images_config,
rstudio_images_config=rstusio_images_config,
gpu_number_default=gpu_number_default,
gpu_vendors_config=gpu_vendors_config,
affinity_options_config=affinity_options_config,
tolerations_options_config=tolerations_options_config,
default_poddefaults_config=default_poddefaults,
)
# push file
self._upload_jwa_file_to_container(jwa_content)
Expand Down Expand Up @@ -338,7 +462,7 @@ def main(self, _) -> None:
self._deploy_k8s_resources()
if self._is_container_ready():
self._update_layer()
self._update_images_selector()
self._update_spawner_ui_config()
interfaces = self._get_interfaces()
self._configure_mesh(interfaces)
except CheckFailed as err:
Expand All @@ -348,8 +472,13 @@ def main(self, _) -> None:
self.model.unit.status = ActiveStatus()


#
# Start main
#
def _to_yaml(data: str) -> str:
"""Jinja filter to convert data to formatted yaml.
This is used in the jinja template to format the yaml in the template.
"""
return yaml.safe_dump(data)


if __name__ == "__main__":
main(JupyterUI)
Loading

0 comments on commit 3ec71e9

Please sign in to comment.