Skip to content

Commit

Permalink
Update Estimation from ckiseki
Browse files Browse the repository at this point in the history
  • Loading branch information
baluteshih committed Apr 6, 2024
1 parent ecdace2 commit def30fc
Showing 1 changed file with 45 additions and 12 deletions.
57 changes: 45 additions & 12 deletions codebook/6_Math/Estimation.tex
Original file line number Diff line number Diff line change
@@ -1,12 +1,45 @@
\begin{itemize}
\item Estimation

\begin{itemize}
%\itemsep-0.5em
\item The number of divisors of $n$ is at most around $100$ for $n<5e4$, $500$ for $n<1e7$, $2000$ for $n<1e10$, $200000$ for $n<1e19$.
\item The number of ways of writing $n$ as a sum of positive integers, disregarding the order of the summands. $1, 1, 2, 3, 5, 7, 11, 15, 22, 30$ for $n=0\sim 9$, $627$ for $n=20$, $\sim 2e5$ for $n=50$, $\sim 2e8$ for $n=100$.
\item Total number of partitions of $n$ distinct elements: $B(n)=1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,$\\
$27644437, 190899322, \ldots$.
\end{itemize}

\end{itemize}
{
\setlength{\tabcolsep}{1pt}
\setlength{\columnsep}{0pt}

\noindent
\begin{tabular}{@{}c|*{20}{c@{\ }}@{}}
$n$ & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 20 & 30 & 40 & 50 & 100 \\
\hline
$p(n)$ & 2 & 3 & 5 & 7 & 11 & 15 & 22 & 30 & 627 & 5604 & 4e4 & 2e5 & 2e8 \\
\end{tabular}

\noindent
\begin{tabular}{@{}c|*{20}{c@{\ }}@{}}
$n$
& 100 & 1e3 & 1e6 & 1e9 & 1e12 & 1e15 & 1e18 \\
\hline
$d(i)$ % max _ { i <= n } d(i)
& 12 & 32 & 240 & 1344 & 6720 & 26880 & 103680 \\
\end{tabular}

% \vspace{-2.0em}
% \begin{center}
% \begin{tabular}{c|*{20}c}
% $n$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
% \hline
% $n!$ & 1 & 2 & 6 & 24 & 120 & 720 & 5040 & 40320 & 3.6e5 & 3.6e6 & 4e7 \\
% \end{tabular}
% \end{center}

\noindent
\begin{tabular}{c|*{20}c}
$n$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
& 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
$\binom{2n}{n}$ & 2 & 6 & 20 & 70 & 252 & 924 & 3432 & 12870 & 48620
& 184756 & 7e5 & 2e6 & 1e7 & 4e7 & 1.5e8 \\
\end{tabular}

\noindent
\begin{tabular}{c|*{20}c}
$n$ & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline
$B_n$ & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147 & 115975 & 7e5 & 4e6 & 3e7 \\
\end{tabular}
}

0 comments on commit def30fc

Please sign in to comment.