-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
🌱 Add MMSeg base configs for trash dataset
- Loading branch information
Showing
63 changed files
with
3,639 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# dataset settings | ||
dataset_type = "COCOTrashDataset" | ||
data_root = "/opt/ml/input/mmseg/trash" | ||
|
||
classes = ( | ||
"Background", | ||
"General trash", | ||
"Paper", | ||
"Paper pack", | ||
"Metal", | ||
"Glass", | ||
"Plastic", | ||
"Styrofoam", | ||
"Plastic bag", | ||
"Battery", | ||
"Clothing", | ||
) | ||
|
||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True | ||
) | ||
img_scale = (512, 512) | ||
# crop_size = (256, 256) | ||
train_pipeline = [ | ||
dict(type="LoadImageFromFile"), | ||
dict(type="LoadAnnotations"), | ||
dict(type="Resize", img_scale=img_scale, ratio_range=(0.5, 2.0)), | ||
# dict(type="RandomCrop", crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type="RandomFlip", prob=0.5), | ||
dict(type="PhotoMetricDistortion"), | ||
dict(type="Normalize", **img_norm_cfg), | ||
# dict(type="Pad", size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type="DefaultFormatBundle"), | ||
dict(type="Collect", keys=["img", "gt_semantic_seg"]), | ||
] | ||
test_pipeline = [ | ||
dict(type="LoadImageFromFile"), | ||
dict( | ||
type="MultiScaleFlipAug", | ||
img_scale=img_scale, | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], | ||
flip=False, | ||
transforms=[ | ||
dict(type="Resize", keep_ratio=True), | ||
dict(type="RandomFlip"), | ||
dict(type="Normalize", **img_norm_cfg), | ||
dict(type="ImageToTensor", keys=["img"]), | ||
dict(type="Collect", keys=["img"]), | ||
], | ||
), | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=8, | ||
workers_per_gpu=8, | ||
train=dict( | ||
type="RepeatDataset", | ||
times=40000, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir="img_dir/train", | ||
ann_dir="ann_dir/train", | ||
pipeline=train_pipeline, | ||
), | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir="img_dir/val", | ||
ann_dir="ann_dir/val", | ||
pipeline=test_pipeline, | ||
), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir="img_dir/test", | ||
ann_dir="ann_dir/test", | ||
pipeline=test_pipeline, | ||
test_mode=True, | ||
), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
# yapf:disable | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type="TextLoggerHook", by_epoch=False), | ||
# dict(type='MlflowLoggerHook'), | ||
# dict(type='TensorboardLoggerHook'), | ||
dict( | ||
type="MMSegWandbHook", # "WandbLoggerHook", | ||
init_kwargs={ | ||
"project": "Semantic Segmentation", | ||
"entity": "boostcamp-ai-tech-4-cv-17", | ||
# "name": "mmseg", | ||
}, | ||
interval=10, | ||
log_checkpoint=True, | ||
log_checkpoint_metadata=True, | ||
num_eval_images=100, | ||
), | ||
], | ||
) | ||
# yapf:enable | ||
|
||
dist_params = dict(backend="nccl") | ||
log_level = "INFO" | ||
load_from = None | ||
resume_from = None | ||
|
||
workflow = [("train", 1)] | ||
# workflow = [("train", 1), ("val", 1)] | ||
|
||
cudnn_benchmark = True |
48 changes: 48 additions & 0 deletions
48
mmsegmentation/configs/_trash_/_base_/models/ann_r50-d8.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# model settings | ||
norm_cfg = dict(type="SyncBN", requires_grad=True) | ||
model = dict( | ||
type="EncoderDecoder", | ||
pretrained="open-mmlab://resnet50_v1c", | ||
backbone=dict( | ||
type="ResNetV1c", | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
dilations=(1, 1, 2, 4), | ||
strides=(1, 2, 1, 1), | ||
norm_cfg=norm_cfg, | ||
norm_eval=False, | ||
style="pytorch", | ||
contract_dilation=True, | ||
), | ||
decode_head=dict( | ||
type="ANNHead", | ||
in_channels=[1024, 2048], | ||
in_index=[2, 3], | ||
channels=512, | ||
project_channels=256, | ||
query_scales=(1,), | ||
key_pool_scales=(1, 3, 6, 8), | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), | ||
), | ||
auxiliary_head=dict( | ||
type="FCNHead", | ||
in_channels=1024, | ||
in_index=2, | ||
channels=256, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=0.4), | ||
), | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode="whole"), | ||
) |
46 changes: 46 additions & 0 deletions
46
mmsegmentation/configs/_trash_/_base_/models/apcnet_r50-d8.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
# model settings | ||
norm_cfg = dict(type="SyncBN", requires_grad=True) | ||
model = dict( | ||
type="EncoderDecoder", | ||
pretrained="open-mmlab://resnet50_v1c", | ||
backbone=dict( | ||
type="ResNetV1c", | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
dilations=(1, 1, 2, 4), | ||
strides=(1, 2, 1, 1), | ||
norm_cfg=norm_cfg, | ||
norm_eval=False, | ||
style="pytorch", | ||
contract_dilation=True, | ||
), | ||
decode_head=dict( | ||
type="APCHead", | ||
in_channels=2048, | ||
in_index=3, | ||
channels=512, | ||
pool_scales=(1, 2, 3, 6), | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=dict(type="SyncBN", requires_grad=True), | ||
align_corners=False, | ||
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), | ||
), | ||
auxiliary_head=dict( | ||
type="FCNHead", | ||
in_channels=1024, | ||
in_index=2, | ||
channels=256, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=0.4), | ||
), | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode="whole"), | ||
) |
75 changes: 75 additions & 0 deletions
75
mmsegmentation/configs/_trash_/_base_/models/bisenetv1_r18-d32.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
# model settings | ||
norm_cfg = dict(type="SyncBN", requires_grad=True) | ||
model = dict( | ||
type="EncoderDecoder", | ||
backbone=dict( | ||
type="BiSeNetV1", | ||
in_channels=3, | ||
context_channels=(128, 256, 512), | ||
spatial_channels=(64, 64, 64, 128), | ||
out_indices=(0, 1, 2), | ||
out_channels=256, | ||
backbone_cfg=dict( | ||
type="ResNet", | ||
in_channels=3, | ||
depth=18, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
dilations=(1, 1, 1, 1), | ||
strides=(1, 2, 2, 2), | ||
norm_cfg=norm_cfg, | ||
norm_eval=False, | ||
style="pytorch", | ||
contract_dilation=True, | ||
), | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
init_cfg=None, | ||
), | ||
decode_head=dict( | ||
type="FCNHead", | ||
in_channels=256, | ||
in_index=0, | ||
channels=256, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), | ||
), | ||
auxiliary_head=[ | ||
dict( | ||
type="FCNHead", | ||
in_channels=128, | ||
channels=64, | ||
num_convs=1, | ||
num_classes=19, | ||
in_index=1, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0 | ||
), | ||
), | ||
dict( | ||
type="FCNHead", | ||
in_channels=128, | ||
channels=64, | ||
num_convs=1, | ||
num_classes=19, | ||
in_index=2, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0 | ||
), | ||
), | ||
], | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode="whole"), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# model settings | ||
norm_cfg = dict(type="SyncBN", requires_grad=True) | ||
model = dict( | ||
type="EncoderDecoder", | ||
pretrained=None, | ||
backbone=dict( | ||
type="BiSeNetV2", | ||
detail_channels=(64, 64, 128), | ||
semantic_channels=(16, 32, 64, 128), | ||
semantic_expansion_ratio=6, | ||
bga_channels=128, | ||
out_indices=(0, 1, 2, 3, 4), | ||
init_cfg=None, | ||
align_corners=False, | ||
), | ||
decode_head=dict( | ||
type="FCNHead", | ||
in_channels=128, | ||
in_index=0, | ||
channels=1024, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), | ||
), | ||
auxiliary_head=[ | ||
dict( | ||
type="FCNHead", | ||
in_channels=16, | ||
channels=16, | ||
num_convs=2, | ||
num_classes=19, | ||
in_index=1, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0 | ||
), | ||
), | ||
dict( | ||
type="FCNHead", | ||
in_channels=32, | ||
channels=64, | ||
num_convs=2, | ||
num_classes=19, | ||
in_index=2, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0 | ||
), | ||
), | ||
dict( | ||
type="FCNHead", | ||
in_channels=64, | ||
channels=256, | ||
num_convs=2, | ||
num_classes=19, | ||
in_index=3, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0 | ||
), | ||
), | ||
dict( | ||
type="FCNHead", | ||
in_channels=128, | ||
channels=1024, | ||
num_convs=2, | ||
num_classes=19, | ||
in_index=4, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0 | ||
), | ||
), | ||
], | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode="whole"), | ||
) |
Oops, something went wrong.