The LinuxServer.io team brings you another container release featuring :-
- regular and timely application updates
- easy user mappings (PGID, PUID)
- custom base image with s6 overlay
- weekly base OS updates with common layers across the entire LinuxServer.io ecosystem to minimise space usage, down time and bandwidth
- regular security updates
Find us at:
- Blog - all the things you can do with our containers including How-To guides, opinions and much more!
- Discord - realtime support / chat with the community and the team.
- Discourse - post on our community forum.
- Fleet - an online web interface which displays all of our maintained images.
- GitHub - view the source for all of our repositories.
- Open Collective - please consider helping us by either donating or contributing to our budget
Jellyfin is a Free Software Media System that puts you in control of managing and streaming your media. It is an alternative to the proprietary Emby and Plex, to provide media from a dedicated server to end-user devices via multiple apps. Jellyfin is descended from Emby's 3.5.2 release and ported to the .NET Core framework to enable full cross-platform support. There are no strings attached, no premium licenses or features, and no hidden agendas: just a team who want to build something better and work together to achieve it.
Our images support multiple architectures such as x86-64
, arm64
and armhf
. We utilise the docker manifest for multi-platform awareness. More information is available from docker here and our announcement here.
Simply pulling linuxserver/jellyfin
should retrieve the correct image for your arch, but you can also pull specific arch images via tags.
The architectures supported by this image are:
Architecture | Tag |
---|---|
x86-64 | amd64-latest |
arm64 | arm64v8-latest |
armhf | arm32v7-latest |
This image provides various versions that are available via tags. latest
tag usually provides the latest stable version. Others are considered under development and caution must be exercised when using them.
Tag | Description |
---|---|
latest | Stable Jellyfin releases |
nightly | Nightly Jellyfin releases |
Here are some example snippets to help you get started creating a container.
docker create \
--name=jellyfin \
-e PUID=1000 \
-e PGID=1000 \
-e TZ=Europe/London \
-e UMASK_SET=<022> `#optional` \
-p 8096:8096 \
-p 8920:8920 `#optional` \
-v </path/to/library>:/config \
-v <path/to/tvseries>:/data/tvshows \
-v </path/to/movies>:/data/movies \
-v </path for transcoding>:/transcode `#optional` \
-v /opt/vc/lib:/opt/vc/lib `#optional` \
--device /dev/dri:/dev/dri `#optional` \
--device /dev/vchiq:/dev/vchiq `#optional` \
--restart unless-stopped \
linuxserver/jellyfin
Compatible with docker-compose v2 schemas.
---
version: "2"
services:
jellyfin:
image: linuxserver/jellyfin
container_name: jellyfin
environment:
- PUID=1000
- PGID=1000
- TZ=Europe/London
- UMASK_SET=<022> #optional
volumes:
- </path/to/library>:/config
- <path/to/tvseries>:/data/tvshows
- </path/to/movies>:/data/movies
- </path for transcoding>:/transcode #optional
- /opt/vc/lib:/opt/vc/lib #optional
ports:
- 8096:8096
- 8920:8920 #optional
devices:
- /dev/dri:/dev/dri #optional
- /dev/vchiq:/dev/vchiq #optional
restart: unless-stopped
Container images are configured using parameters passed at runtime (such as those above). These parameters are separated by a colon and indicate <external>:<internal>
respectively. For example, -p 8080:80
would expose port 80
from inside the container to be accessible from the host's IP on port 8080
outside the container.
Parameter | Function |
---|---|
-p 8096 |
Http webUI. |
-p 8920 |
Https webUI (you need to setup your own certificate). |
-e PUID=1000 |
for UserID - see below for explanation |
-e PGID=1000 |
for GroupID - see below for explanation |
-e TZ=Europe/London |
Specify a timezone to use EG Europe/London |
-e UMASK_SET=<022> |
for umask setting of Emby, default if left unset is 022. |
-v /config |
Jellyfin data storage location. This can grow very large, 50gb+ is likely for a large collection. |
-v /data/tvshows |
Media goes here. Add as many as needed e.g. /data/movies , /data/tv , etc. |
-v /data/movies |
Media goes here. Add as many as needed e.g. /data/movies , /data/tv , etc. |
-v /transcode |
Path for transcoding folder, optional. |
-v /opt/vc/lib |
Path for Raspberry Pi OpenMAX libs optional. |
--device /dev/dri |
Only needed if you want to use your Intel GPU for hardware accelerated video encoding (vaapi). |
--device /dev/vchiq |
Only needed if you want to use your Raspberry Pi OpenMax video encoding (Bellagio). |
You can set any environment variable from a file by using a special prepend FILE__
.
As an example:
-e FILE__PASSWORD=/run/secrets/mysecretpassword
Will set the environment variable PASSWORD
based on the contents of the /run/secrets/mysecretpassword
file.
When using volumes (-v
flags) permissions issues can arise between the host OS and the container, we avoid this issue by allowing you to specify the user PUID
and group PGID
.
Ensure any volume directories on the host are owned by the same user you specify and any permissions issues will vanish like magic.
In this instance PUID=1000
and PGID=1000
, to find yours use id user
as below:
$ id username
uid=1000(dockeruser) gid=1000(dockergroup) groups=1000(dockergroup)
Webui can be found at http://<your-ip>:8096
More information can be found in their official documentation here .
Hardware acceleration users for Intel Quicksync will need to mount their /dev/dri video device inside of the container by passing the following command when running or creating the container:
--device=/dev/dri:/dev/dri
We will automatically ensure the abc user inside of the container has the proper permissions to access this device.
Hardware acceleration users for Nvidia will need to install the container runtime provided by Nvidia on their host, instructions can be found here:
https://github.com/NVIDIA/nvidia-docker
We automatically add the necessary environment variable that will utilise all the features available on a GPU on the host. Once nvidia-docker is installed on your host you will need to re/create the docker container with the nvidia container runtime --runtime=nvidia
and add an environment variable -e NVIDIA_VISIBLE_DEVICES=all
(can also be set to a specific gpu's UUID, this can be discovered by running nvidia-smi --query-gpu=gpu_name,gpu_uuid --format=csv
). NVIDIA automatically mounts the GPU and drivers from your host into the jellyfin docker container.
Hardware acceleration users for Raspberry Pi OpenMAX will need to mount their /dev/vchiq video device inside of the container and their system OpenMax libs by passing the following options when running or creating the container:
--device=/dev/vchiq:/dev/vchiq
-v /opt/vc/lib:/opt/vc/lib
- Shell access whilst the container is running:
docker exec -it jellyfin /bin/bash
- To monitor the logs of the container in realtime:
docker logs -f jellyfin
- container version number
docker inspect -f '{{ index .Config.Labels "build_version" }}' jellyfin
- image version number
docker inspect -f '{{ index .Config.Labels "build_version" }}' linuxserver/jellyfin
Most of our images are static, versioned, and require an image update and container recreation to update the app inside. With some exceptions (ie. nextcloud, plex), we do not recommend or support updating apps inside the container. Please consult the Application Setup section above to see if it is recommended for the image.
Below are the instructions for updating containers:
- Update the image:
docker pull linuxserver/jellyfin
- Stop the running container:
docker stop jellyfin
- Delete the container:
docker rm jellyfin
- Recreate a new container with the same docker create parameters as instructed above (if mapped correctly to a host folder, your
/config
folder and settings will be preserved) - Start the new container:
docker start jellyfin
- You can also remove the old dangling images:
docker image prune
- Update all images:
docker-compose pull
- or update a single image:
docker-compose pull jellyfin
- or update a single image:
- Let compose update all containers as necessary:
docker-compose up -d
- or update a single container:
docker-compose up -d jellyfin
- or update a single container:
- You can also remove the old dangling images:
docker image prune
- Pull the latest image at its tag and replace it with the same env variables in one run:
docker run --rm \ -v /var/run/docker.sock:/var/run/docker.sock \ containrrr/watchtower \ --run-once jellyfin
Note: We do not endorse the use of Watchtower as a solution to automated updates of existing Docker containers. In fact we generally discourage automated updates. However, this is a useful tool for one-time manual updates of containers where you have forgotten the original parameters. In the long term, we highly recommend using Docker Compose.
- You can also remove the old dangling images:
docker image prune
If you want to make local modifications to these images for development purposes or just to customize the logic:
git clone https://github.com/linuxserver/docker-jellyfin.git
cd docker-jellyfin
docker build \
--no-cache \
--pull \
-t linuxserver/jellyfin:latest .
The ARM variants can be built on x86_64 hardware using multiarch/qemu-user-static
docker run --rm --privileged multiarch/qemu-user-static:register --reset
Once registered you can define the dockerfile to use with -f Dockerfile.aarch64
.
- 30.01.20: - Add nightly tag.
- 09.01.20: - Add Pi OpenMax support.
- 02.10.19: - Improve permission fixing for render & dvb devices.
- 31.07.19: - Add AMD drivers for vaapi support on x86.
- 13.06.19: - Add Intel drivers for vaapi support on x86.
- 07.06.19: - Initial release.