This repository is the official implementation of "Task-Agnostic Vision Transformer for Distributed Learning of Image Processing" which is published in IEEE Transactions on Image Processing.
To install requirements:
conda env create -f environment.yaml
📋 The inference in this code is performed by stacking all patches of an input image in batch dimension, while we report results by testing the patches with batch size 1.
To evaluate our model on deblocking task with quality 10, run:
python deblocking_inference.py --Q=10
To evaluate our model on denoising task with σ=30, run:
python denoising_inference.py --mean=0 --std=30
To evaluate our model on deraining task, run:
python deraining_inference.py
To evaluate our model on deblurring task, run:
python deblurring_inference.py
You can download pre-trained model checkpoints (.pt) from the below link. https://drive.google.com/drive/folders/1j_EXwzkMhl2y0TCsOnwg68lbYL0Q07RN?usp=sharing.
Copy downloaded checkpoint file to proper directory under 'inference/checkpoints'.
Quality | Metric | Input | DnCNN | AR-CNN | QCN | Base | Single | Multi |
---|---|---|---|---|---|---|---|---|
10 | PSNR SSIM |
25.67 0.719 |
26.70 0.755 |
26.42 0.777 |
27.66 0.811 |
27.67 0.785 |
27.59 0.785 |
27.69 0.786 |
50 | PSNR SSIM |
31.51 0.902 |
32.70 0.918 |
N/A N/A |
33.00 0.934 |
33.01 0.923 |
32.93 0.924 |
33.20 0.924 |
Metric | Input | CBM3D | FFDNet | IRCNN | DHDN | SADNet | Base | Single | Multi |
---|---|---|---|---|---|---|---|---|---|
PSNR SSIM |
19.03 0.336 |
29.71 0.843 |
30.32 0.860 |
30.31 0.860 |
30.41 0.864 |
30.64 N/A |
30.43 0.864 |
30.65 0.870 |
30.69 0.871 |
Dataset | Metric | Input | DerainNet | SEMI | UMRL | PreNet | MSPFN | Base | Single | Multi |
---|---|---|---|---|---|---|---|---|---|---|
Rain100H | PSNR SSIM |
12.13 0.349 |
14.92 0.592 |
16.56 0.486 |
26.01 0.832 |
26.77 0.858 |
28.66 0.860 |
28.88 0.863 |
28.95 0.864 |
29.35 0.875 |
Rain100L | PSNR SSIM |
25.52 0.825 |
27.03 0.884 |
25.03 0.842 |
29.18 0.923 |
32.44 0.950 |
32.40 0.933 |
32.93 0.937 |
32.50 0.935 |
34.30 0.949 |
Metric | Input | DeblurGAN | Nah et al. | Zhang et al. | DeblurGANv2 | Base | Single | Multi |
---|---|---|---|---|---|---|---|---|
PSNR SSIM |
25.64 0.790 |
28.70 0.858 |
29.08 0.914 |
29.19 0.931 |
29.55 0.934 |
28.62 0.864 |
29.28 0.877 |
30.06 0.894 |
-
We implemented out code based on Flower (https://github.com/adap/flower) which is under Apache License, Version 2.0.
-
See LICENSE for more information.
Data for each task can be downloaded at following links:
-
PASCAL VOC 2012 : http://host.robots.ox.ac.uk/pascal/VOC/
-
BSDS500 : https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
-
Deraining :
- Rain1400 : https://xueyangfu.github.io/projects/cvpr2017.html
- Rain1800 : https://www.icst.pku.edu.cn/struct/Projects/joint\_rain\_removal.html
- Rain800 : https://github.com/hezhangsprinter/ID-CGAN
- Rain12 : https://yu-li.github.io/
- Rain100L/Rain100H : https://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html