-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Documentation] Add doc for multi-task learning (#887)
*Issue #, if available:* #789 *Description of changes:* Add doc for multi-task learning. By submitting this pull request, I confirm that you can use, modify, copy, and redistribute this contribution, under the terms of your choice. --------- Co-authored-by: Xiang Song <[email protected]>
- Loading branch information
Showing
2 changed files
with
281 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
.. _multi_task_learning: | ||
|
||
Multi-task Learning in GraphStorm | ||
========================================= | ||
In real world graphs, it is common to have multiple tasks defined on the same graph. For example, people | ||
may want to do link prediction as well as node feature reconstruction at the same time to supervise the | ||
training of a GNN model. As another example, people may want to do fraud detection on both seller and | ||
buyer nodes in a seller-product-buyer graph. To support such scenarios, GraphStorm supports | ||
multi-task learning, allowing users to define multiple training targets on different nodes and edges | ||
within a single training loop. The supported training supervisions for multi-task learning include node classification/regression, edge classification/regression, link prediction and node feature reconstruction. | ||
|
||
|
||
Preparing the Training Data | ||
--------------------------- | ||
You can follow the :ref:`Use Your Own Data tutorial<use-own-data>` to prepare your graph data for | ||
multi-task learning. You can define multiple tasks on the same node type or edge type as shown in the JSON example below. | ||
|
||
.. code-block:: json | ||
{ | ||
"version": "gconstruct-v0.1", | ||
"nodes": [ | ||
...... | ||
{ | ||
"node_type": "paper", | ||
"format": { | ||
"name": "parquet" | ||
}, | ||
"files": [ | ||
"/tmp/acm_raw/nodes/paper.parquet" | ||
], | ||
"node_id_col": "node_id", | ||
"features": [ | ||
{ | ||
"feature_col": "feat", | ||
"feature_name": "feat" | ||
} | ||
], | ||
"labels": [ | ||
{ | ||
"label_col": "label_class", | ||
"task_type": "classification", | ||
"split_pct": [0.8, 0.1, 0.1], | ||
"mask_field_names": ["train_mask_class", | ||
"val_mask_class", | ||
"test_mask_class"] | ||
}, | ||
{ | ||
"label_col": "label_reg", | ||
"task_type": "regression", | ||
"split_pct": [0.8, 0.1, 0.1], | ||
"mask_field_names": ["train_mask_reg", | ||
"val_mask_reg", | ||
"test_mask_reg"] | ||
} | ||
] | ||
}, | ||
...... | ||
], | ||
...... | ||
} | ||
In the above configuration, we define two tasks for the **paper** nodes. One is a classification task | ||
with the label name of `label_class` and the train/validation/test mask fields as `train_mask_class`, | ||
`val_mask_class` and `test_mask_class`, respectively. Another one is a regression task with label name of `label_reg` | ||
and the train/validation/test mask fields as `train_mask_reg`, `val_mask_reg` and `test_mask_reg`, respectively. | ||
|
||
You can also define multiple tasks on different node and edge types as shown in the JSON example below. | ||
|
||
.. code-block:: json | ||
{ | ||
"version": "gconstruct-v0.1", | ||
"nodes": [ | ||
...... | ||
{ | ||
"node_type": "paper", | ||
"format": { | ||
"name": "parquet" | ||
}, | ||
"files": [ | ||
"/tmp/acm_raw/nodes/paper.parquet" | ||
], | ||
"node_id_col": "node_id", | ||
"features": [ | ||
{ | ||
"feature_col": "feat", | ||
"feature_name": "feat" | ||
} | ||
], | ||
"labels": [ | ||
{ | ||
"label_col": "label", | ||
"task_type": "classification", | ||
"split_pct": [0.8, 0.1, 0.1], | ||
"mask_field_names": ["train_mask_class", | ||
"val_mask_class", | ||
"test_mask_class"] | ||
} | ||
] | ||
}, | ||
...... | ||
], | ||
"edges": [ | ||
...... | ||
{ | ||
"relation": [ | ||
"paper", | ||
"citing", | ||
"paper" | ||
], | ||
"format": { | ||
"name": "parquet" | ||
}, | ||
"files": [ | ||
"/tmp/acm_raw/edges/paper_citing_paper.parquet" | ||
], | ||
"source_id_col": "source_id", | ||
"dest_id_col": "dest_id", | ||
"labels": [ | ||
{ | ||
"task_type": "link_prediction", | ||
"split_pct": [0.8, 0.1, 0.1], | ||
"mask_field_names": ["train_mask_lp", | ||
"val_mask_lp", | ||
"test_mask_lp"] | ||
} | ||
] | ||
}, | ||
...... | ||
] | ||
} | ||
In the above configuration, we define one task for the **paper** node and one task for the | ||
**paper,citing,paper** edge. The node classification task will take the label name of `label_class` and the train/validation/test mask fields as `train_mask_class`, | ||
`val_mask_class` and `test_mask_class`, respectively. The link prediction task will take the train/validation/test mask fields as `train_mask_lp`, `val_mask_lp` and `test_mask_lp`, respectively. | ||
|
||
|
||
Construct Graph | ||
~~~~~~~~~~~~~~~~ | ||
You can follow the instructions in :ref:`Run graph construction<run-graph-construction>` to use the | ||
GraphStorm construction tool for creating partitioned graph data. Please ensure you | ||
customize the command line arguments such as `--conf-file`, `--output-dir`, `--graph-name` to your | ||
specific values. | ||
|
||
|
||
Run Multi-task Learning Training | ||
-------------------------------- | ||
Running a multi-task learning training task is similar to running other GraphStorm built-in tasks as | ||
detailed in :ref:`Launch Training<launch-training>`. The main difference is to define multiple training | ||
targets in the YAML configuration file. | ||
|
||
|
||
Define Multi-task for training | ||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
You can specify multiple training tasks for a training job by providing the `multi_task_learning` | ||
configurations in the YAML file. The following configuration defines two training tasks, one for node | ||
classification and one for edge classification. | ||
|
||
.. code-blocks:: yaml | ||
|
||
--- | ||
version: 1.0 | ||
gsf: | ||
basic: | ||
... | ||
... | ||
multi_task_learning: | ||
- node_classification: | ||
target_ntype: "paper" | ||
label_field: "label_class" | ||
mask_fields: | ||
- "train_mask_class" | ||
- "val_mask_class" | ||
- "test_mask_class" | ||
num_classes: 10 | ||
task_weight: 1.0 | ||
- node_regression: | ||
target_ntype: "paper" | ||
label_field: "label_reg" | ||
mask_fields: | ||
- "train_mask_reg" | ||
- "val_mask_reg" | ||
- "test_mask_reg" | ||
task_weight: 1.0 | ||
- link_prediction: | ||
num_negative_edges: 4 | ||
num_negative_edges_eval: 100 | ||
train_negative_sampler: joint | ||
train_etype: | ||
- "paper,citing,paper" | ||
mask_fields: | ||
- "train_mask_lp" | ||
- "val_mask_lp" | ||
- "test_mask_lp" | ||
task_weight: 0.5 # weight of the task | ||
|
||
Task specific hyperparameters in multi-task learning are same as those for single task learning as | ||
detailed in :ref:`Training and Inference<configurations-run>`, except that two new configs are required, | ||
i.e., `mask_fields` and `task_weight`. The `mask_fields` provides the specific training, validation and | ||
test masks for a task. The `task_weight` defines a task's loss weight value to be multiplied with | ||
its loss value when aggregating all task losses to compute the total loss during training. | ||
|
||
In multi-task learning, GraphStorm provides a new unsupervised training signal, i.e., node feature | ||
reconstruction (`BUILTIN_TASK_RECONSTRUCT_NODE_FEAT = "reconstruct_node_feat"`). You can define a | ||
node feature reconstruction task as the following example: | ||
|
||
.. code-blocks:: yaml | ||
|
||
--- | ||
version: 1.0 | ||
gsf: | ||
basic: | ||
... | ||
... | ||
multi_task_learning: | ||
- node_classification: | ||
... | ||
- reconstruct_node_feat: | ||
reconstruct_nfeat_name: "title" | ||
target_ntype: "movie" | ||
batch_size: 128 | ||
mask_fields: | ||
- "train_mask_c0" # node classification mask 0 | ||
- "val_mask_c0" | ||
- "test_mask_c0" | ||
task_weight: 1.0 | ||
eval_metric: | ||
- "mse" | ||
|
||
In the configuration, `target_ntype` defines the target node type, the reconstruct node feature | ||
learning will be applied. `reconstruct_nfeat_name`` defines the name of the feature to be | ||
re-construct. The other configs are same as node regression tasks. | ||
|
||
|
||
Run Model Training | ||
~~~~~~~~~~~~~~~~~~~ | ||
GraphStorm introduces a new command line `graphstorm.run.gs_multi_task_learning` with an additional | ||
argument `--inference` to run multi-task learning tasks. You can use the following command to start a multi-task training job: | ||
|
||
.. code-block:: bash | ||
python -m graphstorm.run.gs_multi_task_learning \ | ||
--workspace <PATH_TO_WORKSPACE> \ | ||
--num-trainers 1 \ | ||
--num-servers 1 \ | ||
--part-config <PATH_TO_GRAPH_DATA> \ | ||
--cf <PATH_TO_CONFIG> \ | ||
Run Model Inference | ||
~~~~~~~~~~~~~~~~~~~~ | ||
You can use the same command line `graphstorm.run.gs_multi_task_learning` to run inference as following: | ||
|
||
.. code-block:: bash | ||
python -m graphstorm.run.gs_multi_task_learning \ | ||
--inference \ | ||
--workspace <PATH_TO_WORKSPACE> \ | ||
--num-trainers 1 \ | ||
--num-servers 1 \ | ||
--part-config <PATH_TO_GRAPH_DATA> \ | ||
--cf <PATH_TO_CONFIG> \ | ||
--save-prediction-path <PATH_TO_OUTPUT> | ||
The prediction results of each prediction tasks (node classification, node regression, | ||
edge classification and edge regression) will be saved into different sub-directories under PATH_TO_OUTPUT. The sub-directories are prefixed with the `<task_type>_<node/edge_type>_<label_name>`. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters