Skip to content

Commit

Permalink
[SPARK-44891][PYTHON][CONNECT] Enable Doctests of rand, randn and…
Browse files Browse the repository at this point in the history
… `log`

### What changes were proposed in this pull request?

I roughly went thought all the skipped doctests in `pyspark.sql.functions`, and find we can enabled doctests of `rand`, `randn` and `log`, by making them deterministic:

- specify the `numPartitions` in `spark.range` for `rand` `randn`;
- changes the input values for `log`

### Why are the changes needed?
Enable Doctests of `rand`, `randn` and `log`, improve test coverage

### Does this PR introduce _any_ user-facing change?
yes

### How was this patch tested?
enabled doctests

### Was this patch authored or co-authored using generative AI tooling?
No

Closes #42584 from zhengruifeng/make_doctest_deterministic.

Authored-by: Ruifeng Zheng <[email protected]>
Signed-off-by: Ruifeng Zheng <[email protected]>
  • Loading branch information
zhengruifeng committed Aug 21, 2023
1 parent 7f3a439 commit 290b632
Showing 1 changed file with 30 additions and 29 deletions.
59 changes: 30 additions & 29 deletions python/pyspark/sql/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -4616,13 +4616,13 @@ def rand(seed: Optional[int] = None) -> Column:
Examples
--------
>>> df = spark.range(2)
>>> df.withColumn('rand', rand(seed=42) * 3).show() # doctest: +SKIP
>>> from pyspark.sql import functions as F
>>> spark.range(0, 2, 1, 1).withColumn('rand', F.rand(seed=42) * 3).show()
+---+------------------+
| id| rand|
+---+------------------+
| 0|1.4385751892400076|
| 1|1.7082186019706387|
| 0|1.8575681106759028|
| 1|1.5288056527339444|
+---+------------------+
"""
if seed is not None:
Expand Down Expand Up @@ -4657,14 +4657,14 @@ def randn(seed: Optional[int] = None) -> Column:
Examples
--------
>>> df = spark.range(2)
>>> df.withColumn('randn', randn(seed=42)).show() # doctest: +SKIP
+---+--------------------+
| id| randn|
+---+--------------------+
| 0|-0.04167221574820542|
| 1| 0.15241403986452778|
+---+--------------------+
>>> from pyspark.sql import functions as F
>>> spark.range(0, 2, 1, 1).withColumn('randn', F.randn(seed=42)).show()
+---+------------------+
| id| randn|
+---+------------------+
| 0| 2.384479054241165|
| 1|0.1920934041293524|
+---+------------------+
"""
if seed is not None:
return _invoke_function("randn", seed)
Expand Down Expand Up @@ -5159,26 +5159,27 @@ def log(arg1: Union["ColumnOrName", float], arg2: Optional["ColumnOrName"] = Non
Examples
--------
>>> df = spark.createDataFrame([10, 100, 1000], "INT")
>>> df.select(log(10.0, df.value).alias('ten')).show() # doctest: +SKIP
+---+
|ten|
+---+
|1.0|
|2.0|
|3.0|
+---+
>>> from pyspark.sql import functions as F
>>> df = spark.sql("SELECT * FROM VALUES (1), (2), (4) AS t(value)")
>>> df.select(F.log(2.0, df.value).alias('log2_value')).show()
+----------+
|log2_value|
+----------+
| 0.0|
| 1.0|
| 2.0|
+----------+
And Natural logarithm
>>> df.select(log(df.value)).show() # doctest: +SKIP
+-----------------+
| ln(value)|
+-----------------+
|2.302585092994046|
|4.605170185988092|
|4.605170185988092|
+-----------------+
>>> df.select(F.log(df.value).alias('ln_value')).show()
+------------------+
| ln_value|
+------------------+
| 0.0|
|0.6931471805599453|
|1.3862943611198906|
+------------------+
"""
if arg2 is None:
return _invoke_function_over_columns("log", cast("ColumnOrName", arg1))
Expand Down

0 comments on commit 290b632

Please sign in to comment.