-
Notifications
You must be signed in to change notification settings - Fork 166
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat: correlation support #456
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
256 changes: 256 additions & 0 deletions
256
core/src/execution/datafusion/expressions/correlation.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use arrow::compute::{and, filter, is_not_null}; | ||
|
||
use std::{any::Any, sync::Arc}; | ||
|
||
use crate::execution::datafusion::expressions::{ | ||
covariance::CovarianceAccumulator, stats::StatsType, stddev::StddevAccumulator, | ||
utils::down_cast_any_ref, | ||
}; | ||
use arrow::{ | ||
array::ArrayRef, | ||
datatypes::{DataType, Field}, | ||
}; | ||
use datafusion::logical_expr::Accumulator; | ||
use datafusion_common::{Result, ScalarValue}; | ||
use datafusion_physical_expr::{expressions::format_state_name, AggregateExpr, PhysicalExpr}; | ||
|
||
/// CORR aggregate expression | ||
/// The implementation mostly is the same as the DataFusion's implementation. The reason | ||
/// we have our own implementation is that DataFusion has UInt64 for state_field `count`, | ||
/// while Spark has Double for count. Also we have added `null_on_divide_by_zero` | ||
/// to be consistent with Spark's implementation. | ||
#[derive(Debug)] | ||
pub struct Correlation { | ||
name: String, | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl Correlation { | ||
pub fn new( | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
name: impl Into<String>, | ||
data_type: DataType, | ||
null_on_divide_by_zero: bool, | ||
) -> Self { | ||
// the result of correlation just support FLOAT64 data type. | ||
assert!(matches!(data_type, DataType::Float64)); | ||
Self { | ||
name: name.into(), | ||
expr1, | ||
expr2, | ||
null_on_divide_by_zero, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for Correlation { | ||
/// Return a reference to Any that can be used for downcasting | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, DataType::Float64, true)) | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(CorrelationAccumulator::try_new( | ||
self.null_on_divide_by_zero, | ||
)?)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new( | ||
format_state_name(&self.name, "count"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean1"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean2"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "algo_const"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "m2_1"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "m2_2"), | ||
DataType::Float64, | ||
true, | ||
), | ||
]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
vec![self.expr1.clone(), self.expr2.clone()] | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
} | ||
|
||
impl PartialEq<dyn Any> for Correlation { | ||
fn eq(&self, other: &dyn Any) -> bool { | ||
down_cast_any_ref(other) | ||
.downcast_ref::<Self>() | ||
.map(|x| { | ||
self.name == x.name | ||
&& self.expr1.eq(&x.expr1) | ||
&& self.expr2.eq(&x.expr2) | ||
&& self.null_on_divide_by_zero == x.null_on_divide_by_zero | ||
}) | ||
.unwrap_or(false) | ||
} | ||
} | ||
|
||
/// An accumulator to compute correlation | ||
#[derive(Debug)] | ||
pub struct CorrelationAccumulator { | ||
covar: CovarianceAccumulator, | ||
stddev1: StddevAccumulator, | ||
stddev2: StddevAccumulator, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl CorrelationAccumulator { | ||
/// Creates a new `CorrelationAccumulator` | ||
pub fn try_new(null_on_divide_by_zero: bool) -> Result<Self> { | ||
Ok(Self { | ||
covar: CovarianceAccumulator::try_new(StatsType::Population)?, | ||
stddev1: StddevAccumulator::try_new(StatsType::Population, null_on_divide_by_zero)?, | ||
stddev2: StddevAccumulator::try_new(StatsType::Population, null_on_divide_by_zero)?, | ||
null_on_divide_by_zero, | ||
}) | ||
} | ||
} | ||
|
||
impl Accumulator for CorrelationAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.covar.get_count()), | ||
ScalarValue::from(self.covar.get_mean1()), | ||
ScalarValue::from(self.covar.get_mean2()), | ||
ScalarValue::from(self.covar.get_algo_const()), | ||
ScalarValue::from(self.stddev1.get_m2()), | ||
ScalarValue::from(self.stddev2.get_m2()), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = if values[0].null_count() != 0 || values[1].null_count() != 0 { | ||
let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?; | ||
let values1 = filter(&values[0], &mask)?; | ||
let values2 = filter(&values[1], &mask)?; | ||
|
||
vec![values1, values2] | ||
} else { | ||
values.to_vec() | ||
}; | ||
|
||
if !values[0].is_empty() && !values[1].is_empty() { | ||
self.covar.update_batch(&values)?; | ||
self.stddev1.update_batch(&values[0..1])?; | ||
self.stddev2.update_batch(&values[1..2])?; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = if values[0].null_count() != 0 || values[1].null_count() != 0 { | ||
let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?; | ||
let values1 = filter(&values[0], &mask)?; | ||
let values2 = filter(&values[1], &mask)?; | ||
|
||
vec![values1, values2] | ||
} else { | ||
values.to_vec() | ||
}; | ||
|
||
self.covar.retract_batch(&values)?; | ||
self.stddev1.retract_batch(&values[0..1])?; | ||
self.stddev2.retract_batch(&values[1..2])?; | ||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let states_c = [ | ||
states[0].clone(), | ||
states[1].clone(), | ||
states[2].clone(), | ||
states[3].clone(), | ||
]; | ||
let states_s1 = [states[0].clone(), states[1].clone(), states[4].clone()]; | ||
let states_s2 = [states[0].clone(), states[2].clone(), states[5].clone()]; | ||
|
||
if states[0].len() > 0 && states[1].len() > 0 && states[2].len() > 0 { | ||
self.covar.merge_batch(&states_c)?; | ||
self.stddev1.merge_batch(&states_s1)?; | ||
self.stddev2.merge_batch(&states_s2)?; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let covar = self.covar.evaluate()?; | ||
let stddev1 = self.stddev1.evaluate()?; | ||
let stddev2 = self.stddev2.evaluate()?; | ||
|
||
match (covar, stddev1, stddev2) { | ||
( | ||
ScalarValue::Float64(Some(c)), | ||
ScalarValue::Float64(Some(s1)), | ||
ScalarValue::Float64(Some(s2)), | ||
) if s1 != 0.0 && s2 != 0.0 => Ok(ScalarValue::Float64(Some(c / (s1 * s2)))), | ||
_ if self.null_on_divide_by_zero => Ok(ScalarValue::Float64(None)), | ||
_ => { | ||
if self.covar.get_count() == 1.0 { | ||
return Ok(ScalarValue::Float64(Some(f64::NAN))); | ||
} | ||
Ok(ScalarValue::Float64(None)) | ||
} | ||
} | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) - std::mem::size_of_val(&self.covar) + self.covar.size() | ||
- std::mem::size_of_val(&self.stddev1) | ||
+ self.stddev1.size() | ||
- std::mem::size_of_val(&self.stddev2) | ||
+ self.stddev2.size() | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -109,3 +109,4 @@ The following Spark expressions are currently available: | |
- VarianceSamp | ||
- StddevPop | ||
- StddevSamp | ||
- Corr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should we add
withInfo()
?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, I forgot this. Added.