-
Notifications
You must be signed in to change notification settings - Fork 169
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat: Support Variance #297
Changes from 3 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -34,3 +34,4 @@ pub mod subquery; | |
pub mod sum_decimal; | ||
pub mod temporal; | ||
mod utils; | ||
pub mod variance; |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,259 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Defines physical expressions that can evaluated at runtime during query execution | ||
|
||
use std::{any::Any, sync::Arc}; | ||
|
||
use crate::execution::datafusion::expressions::{stats::StatsType, utils::down_cast_any_ref}; | ||
use arrow::{ | ||
array::{ArrayRef, Float64Array}, | ||
compute::cast, | ||
datatypes::{DataType, Field}, | ||
}; | ||
use datafusion::logical_expr::Accumulator; | ||
use datafusion_common::{downcast_value, DataFusionError, Result, ScalarValue}; | ||
use datafusion_physical_expr::{expressions::format_state_name, AggregateExpr, PhysicalExpr}; | ||
|
||
/// VAR_SAMP and VAR_POP aggregate expression | ||
/// The implementation mostly is the same as the DataFusion's implementation. The reason | ||
/// we have our own implementation is that DataFusion has UInt64 for state_field `count`, | ||
/// while Spark has Double for count. Also we have added `null_on_divide_by_zero` | ||
/// to be consistent with Spark's implementation. | ||
#[derive(Debug)] | ||
pub struct Variance { | ||
name: String, | ||
expr: Arc<dyn PhysicalExpr>, | ||
stats_type: StatsType, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl Variance { | ||
/// Create a new VARIANCE aggregate function | ||
pub fn new( | ||
expr: Arc<dyn PhysicalExpr>, | ||
name: impl Into<String>, | ||
data_type: DataType, | ||
stats_type: StatsType, | ||
null_on_divide_by_zero: bool, | ||
) -> Self { | ||
// the result of variance just support FLOAT64 data type. | ||
assert!(matches!(data_type, DataType::Float64)); | ||
Self { | ||
name: name.into(), | ||
expr, | ||
stats_type, | ||
null_on_divide_by_zero, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for Variance { | ||
/// Return a reference to Any that can be used for downcasting | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, DataType::Float64, true)) | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(VarianceAccumulator::try_new( | ||
self.stats_type, | ||
self.null_on_divide_by_zero, | ||
)?)) | ||
} | ||
|
||
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(VarianceAccumulator::try_new( | ||
self.stats_type, | ||
self.null_on_divide_by_zero, | ||
)?)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new( | ||
format_state_name(&self.name, "count"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new(format_state_name(&self.name, "m2"), DataType::Float64, true), | ||
]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
vec![self.expr.clone()] | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
} | ||
|
||
impl PartialEq<dyn Any> for Variance { | ||
fn eq(&self, other: &dyn Any) -> bool { | ||
down_cast_any_ref(other) | ||
.downcast_ref::<Self>() | ||
.map(|x| { | ||
self.name == x.name && self.expr.eq(&x.expr) && self.stats_type == x.stats_type | ||
}) | ||
.unwrap_or(false) | ||
} | ||
} | ||
|
||
/// An accumulator to compute variance | ||
#[derive(Debug)] | ||
pub struct VarianceAccumulator { | ||
m2: f64, | ||
mean: f64, | ||
count: f64, | ||
stats_type: StatsType, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl VarianceAccumulator { | ||
/// Creates a new `VarianceAccumulator` | ||
pub fn try_new(s_type: StatsType, null_on_divide_by_zero: bool) -> Result<Self> { | ||
Ok(Self { | ||
m2: 0_f64, | ||
mean: 0_f64, | ||
count: 0_f64, | ||
stats_type: s_type, | ||
null_on_divide_by_zero, | ||
}) | ||
} | ||
|
||
pub fn get_count(&self) -> f64 { | ||
self.count | ||
} | ||
|
||
pub fn get_mean(&self) -> f64 { | ||
self.mean | ||
} | ||
|
||
pub fn get_m2(&self) -> f64 { | ||
self.m2 | ||
} | ||
} | ||
|
||
impl Accumulator for VarianceAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.count), | ||
ScalarValue::from(self.mean), | ||
ScalarValue::from(self.m2), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = &cast(&values[0], &DataType::Float64)?; | ||
let arr = downcast_value!(values, Float64Array).iter().flatten(); | ||
|
||
for value in arr { | ||
let new_count = self.count + 1.0; | ||
let delta1 = value - self.mean; | ||
let new_mean = delta1 / new_count + self.mean; | ||
let delta2 = value - new_mean; | ||
let new_m2 = self.m2 + delta1 * delta2; | ||
|
||
self.count += 1.0; | ||
self.mean = new_mean; | ||
self.m2 = new_m2; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = &cast(&values[0], &DataType::Float64)?; | ||
let arr = downcast_value!(values, Float64Array).iter().flatten(); | ||
|
||
for value in arr { | ||
let new_count = self.count - 1.0; | ||
let delta1 = self.mean - value; | ||
let new_mean = delta1 / new_count + self.mean; | ||
let delta2 = new_mean - value; | ||
let new_m2 = self.m2 - delta1 * delta2; | ||
|
||
self.count -= 1.0; | ||
self.mean = new_mean; | ||
self.m2 = new_m2; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let counts = downcast_value!(states[0], Float64Array); | ||
let means = downcast_value!(states[1], Float64Array); | ||
let m2s = downcast_value!(states[2], Float64Array); | ||
|
||
for i in 0..counts.len() { | ||
let c = counts.value(i); | ||
if c == 0_f64 { | ||
continue; | ||
} | ||
let new_count = self.count + c; | ||
let new_mean = self.mean * self.count / new_count + means.value(i) * c / new_count; | ||
let delta = self.mean - means.value(i); | ||
let new_m2 = self.m2 + m2s.value(i) + delta * delta * self.count * c / new_count; | ||
|
||
self.count = new_count; | ||
self.mean = new_mean; | ||
self.m2 = new_m2; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let count = match self.stats_type { | ||
StatsType::Population => self.count, | ||
StatsType::Sample => { | ||
if self.count > 0.0 { | ||
self.count - 1.0 | ||
} else { | ||
self.count | ||
} | ||
} | ||
}; | ||
|
||
Ok(ScalarValue::Float64(match self.count { | ||
count if count == 0.0 => None, | ||
count if count == 1.0 => { | ||
if let StatsType::Population = self.stats_type { | ||
Some(0.0) | ||
} else if self.null_on_divide_by_zero { | ||
None | ||
} else { | ||
Some(f64::NAN) | ||
} | ||
} | ||
_ => Some(self.m2 / count), | ||
})) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -94,9 +94,15 @@ message AggExpr { | |
BitXorAgg bitXorAgg = 11; | ||
CovSample covSample = 12; | ||
CovPopulation covPopulation = 13; | ||
Variance variance = 14; | ||
} | ||
} | ||
|
||
enum StatisticsType { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 👍 |
||
SAMPLE = 0; | ||
POPULATION = 1; | ||
} | ||
|
||
message Count { | ||
repeated Expr children = 1; | ||
} | ||
|
@@ -165,6 +171,13 @@ message CovPopulation { | |
DataType datatype = 4; | ||
} | ||
|
||
message Variance { | ||
Expr child = 1; | ||
bool null_on_divide_by_zero = 2; | ||
DataType datatype = 3; | ||
StatisticsType stats_type = 4; | ||
} | ||
|
||
message Literal { | ||
oneof value { | ||
bool bool_val = 1; | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,7 +23,7 @@ import scala.collection.JavaConverters._ | |
|
||
import org.apache.spark.internal.Logging | ||
import org.apache.spark.sql.catalyst.expressions._ | ||
import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, Average, BitAndAgg, BitOrAgg, BitXorAgg, Count, CovPopulation, CovSample, Final, First, Last, Max, Min, Partial, Sum} | ||
import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, Average, BitAndAgg, BitOrAgg, BitXorAgg, Count, CovPopulation, CovSample, Final, First, Last, Max, Min, Partial, Sum, VariancePop, VarianceSamp} | ||
import org.apache.spark.sql.catalyst.expressions.objects.StaticInvoke | ||
import org.apache.spark.sql.catalyst.optimizer.{BuildRight, NormalizeNaNAndZero} | ||
import org.apache.spark.sql.catalyst.plans._ | ||
|
@@ -464,6 +464,46 @@ object QueryPlanSerde extends Logging with ShimQueryPlanSerde { | |
} else { | ||
None | ||
} | ||
case variance @ VarianceSamp(child, nullOnDivideByZero) => | ||
val childExpr = exprToProto(child, inputs, binding) | ||
val dataType = serializeDataType(variance.dataType) | ||
|
||
if (childExpr.isDefined && dataType.isDefined) { | ||
val varBuilder = ExprOuterClass.Variance.newBuilder() | ||
varBuilder.setChild(childExpr.get) | ||
varBuilder.setNullOnDivideByZero(nullOnDivideByZero) | ||
varBuilder.setDatatype(dataType.get) | ||
varBuilder.setStatsTypeValue(0) | ||
|
||
Some( | ||
ExprOuterClass.AggExpr | ||
.newBuilder() | ||
.setVariance(varBuilder) | ||
.build()) | ||
} else { | ||
withInfo(aggExpr, child) | ||
None | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you add the explainPlan info here as well? |
||
} | ||
case variancePop @ VariancePop(child, nullOnDivideByZero) => | ||
val childExpr = exprToProto(child, inputs, binding) | ||
val dataType = serializeDataType(variancePop.dataType) | ||
|
||
if (childExpr.isDefined && dataType.isDefined) { | ||
val varBuilder = ExprOuterClass.Variance.newBuilder() | ||
varBuilder.setChild(childExpr.get) | ||
varBuilder.setNullOnDivideByZero(nullOnDivideByZero) | ||
varBuilder.setDatatype(dataType.get) | ||
varBuilder.setStatsTypeValue(1) | ||
|
||
Some( | ||
ExprOuterClass.AggExpr | ||
.newBuilder() | ||
.setVariance(varBuilder) | ||
.build()) | ||
} else { | ||
withInfo(aggExpr, child) | ||
None | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ditto, add the explainPlan info here as well There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Added. Thanks |
||
} | ||
case fn => | ||
val msg = s"unsupported Spark aggregate function: ${fn.prettyName}" | ||
emitWarning(msg) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why we need to cast input array to Float64? Isn't it already Float64 array?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
VariancePop
's input type isDoubleType
in Spark. I think we can be sure its input is Float64 array always.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Removed. Thanks!
I have the same casting in covariance. There are a few problems I need to fix in covariance
null_on_divide_by_zero
CovSample
andCovPopulation
inexpr.proto
I will have a PR to fix these problems.