-
Notifications
You must be signed in to change notification settings - Fork 166
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat: Port Datafusion Covariance to Comet #234
Changes from 8 commits
fa7501e
b1f32c2
ea0d05a
263c8af
3c91603
1ffff8b
e09e6a4
863b25e
e110ad8
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
use std::{any::Any, sync::Arc}; | ||
|
||
use crate::execution::datafusion::expressions::stats::StatsType; | ||
use arrow::{ | ||
array::{ArrayRef, Float64Array}, | ||
compute::cast, | ||
datatypes::{DataType, Field}, | ||
}; | ||
use datafusion::logical_expr::Accumulator; | ||
use datafusion_common::{ | ||
downcast_value, unwrap_or_internal_err, DataFusionError, Result, ScalarValue, | ||
}; | ||
use datafusion_physical_expr::{ | ||
aggregate::utils::down_cast_any_ref, expressions::format_state_name, AggregateExpr, | ||
PhysicalExpr, | ||
}; | ||
|
||
/// COVAR_SAMP and COVAR_POP aggregate expression | ||
#[derive(Debug, Clone)] | ||
pub struct Covariance { | ||
name: String, | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
Comment on lines
+44
to
+45
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is there better names for these two children expressions? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Spark uses There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I will leave this as is unless you prefer |
||
stats_type: StatsType, | ||
} | ||
|
||
impl Covariance { | ||
/// Create a new COVAR aggregate function | ||
pub fn new( | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
name: impl Into<String>, | ||
data_type: DataType, | ||
stats_type: StatsType, | ||
) -> Self { | ||
// the result of covariance just support FLOAT64 data type. | ||
assert!(matches!(data_type, DataType::Float64)); | ||
Self { | ||
name: name.into(), | ||
expr1, | ||
expr2, | ||
stats_type, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for Covariance { | ||
/// Return a reference to Any that can be used for downcasting | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, DataType::Float64, true)) | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(CovarianceAccumulator::try_new(self.stats_type)?)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new( | ||
format_state_name(&self.name, "count"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean1"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean2"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "algo_const"), | ||
DataType::Float64, | ||
true, | ||
), | ||
]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
vec![self.expr1.clone(), self.expr2.clone()] | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
} | ||
|
||
impl PartialEq<dyn Any> for Covariance { | ||
fn eq(&self, other: &dyn Any) -> bool { | ||
down_cast_any_ref(other) | ||
.downcast_ref::<Self>() | ||
.map(|x| { | ||
self.name == x.name | ||
&& self.expr1.eq(&x.expr1) | ||
&& self.expr2.eq(&x.expr2) | ||
&& self.stats_type == x.stats_type | ||
}) | ||
.unwrap_or(false) | ||
} | ||
} | ||
|
||
/// An accumulator to compute covariance | ||
#[derive(Debug)] | ||
pub struct CovarianceAccumulator { | ||
algo_const: f64, | ||
mean1: f64, | ||
mean2: f64, | ||
count: f64, | ||
stats_type: StatsType, | ||
} | ||
|
||
impl CovarianceAccumulator { | ||
/// Creates a new `CovarianceAccumulator` | ||
pub fn try_new(s_type: StatsType) -> Result<Self> { | ||
Ok(Self { | ||
algo_const: 0_f64, | ||
mean1: 0_f64, | ||
mean2: 0_f64, | ||
count: 0_f64, | ||
stats_type: s_type, | ||
}) | ||
} | ||
|
||
pub fn get_count(&self) -> f64 { | ||
self.count | ||
} | ||
|
||
pub fn get_mean1(&self) -> f64 { | ||
self.mean1 | ||
} | ||
|
||
pub fn get_mean2(&self) -> f64 { | ||
self.mean2 | ||
} | ||
|
||
pub fn get_algo_const(&self) -> f64 { | ||
self.algo_const | ||
} | ||
} | ||
|
||
impl Accumulator for CovarianceAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.count), | ||
ScalarValue::from(self.mean1), | ||
ScalarValue::from(self.mean2), | ||
ScalarValue::from(self.algo_const), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||
|
||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||
|
||
for i in 0..values1.len() { | ||
let value1 = if values1.is_valid(i) { | ||
arr1.next() | ||
} else { | ||
None | ||
}; | ||
let value2 = if values2.is_valid(i) { | ||
arr2.next() | ||
} else { | ||
None | ||
}; | ||
|
||
if value1.is_none() || value2.is_none() { | ||
continue; | ||
} | ||
|
||
let value1 = unwrap_or_internal_err!(value1); | ||
let value2 = unwrap_or_internal_err!(value2); | ||
let new_count = self.count + 1.0; | ||
let delta1 = value1 - self.mean1; | ||
let new_mean1 = delta1 / new_count + self.mean1; | ||
let delta2 = value2 - self.mean2; | ||
let new_mean2 = delta2 / new_count + self.mean2; | ||
let new_c = delta1 * (value2 - new_mean2) + self.algo_const; | ||
|
||
self.count += 1.0; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||
|
||
for i in 0..values1.len() { | ||
let value1 = if values1.is_valid(i) { | ||
arr1.next() | ||
} else { | ||
None | ||
}; | ||
let value2 = if values2.is_valid(i) { | ||
arr2.next() | ||
} else { | ||
None | ||
}; | ||
|
||
if value1.is_none() || value2.is_none() { | ||
continue; | ||
} | ||
|
||
let value1 = unwrap_or_internal_err!(value1); | ||
let value2 = unwrap_or_internal_err!(value2); | ||
|
||
let new_count = self.count - 1.0; | ||
let delta1 = self.mean1 - value1; | ||
let new_mean1 = delta1 / new_count + self.mean1; | ||
let delta2 = self.mean2 - value2; | ||
let new_mean2 = delta2 / new_count + self.mean2; | ||
let new_c = self.algo_const - delta1 * (new_mean2 - value2); | ||
|
||
self.count -= 1.0; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let counts = downcast_value!(states[0], Float64Array); | ||
let means1 = downcast_value!(states[1], Float64Array); | ||
let means2 = downcast_value!(states[2], Float64Array); | ||
let cs = downcast_value!(states[3], Float64Array); | ||
|
||
for i in 0..counts.len() { | ||
let c = counts.value(i); | ||
if c == 0.0 { | ||
continue; | ||
} | ||
let new_count = self.count + c; | ||
let new_mean1 = self.mean1 * self.count / new_count + means1.value(i) * c / new_count; | ||
let new_mean2 = self.mean2 * self.count / new_count + means2.value(i) * c / new_count; | ||
let delta1 = self.mean1 - means1.value(i); | ||
let delta2 = self.mean2 - means2.value(i); | ||
let new_c = | ||
self.algo_const + cs.value(i) + delta1 * delta2 * self.count * c / new_count; | ||
|
||
self.count = new_count; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let count = match self.stats_type { | ||
StatsType::Population => self.count, | ||
StatsType::Sample => { | ||
if self.count > 0.0 { | ||
self.count - 1.0 | ||
} else { | ||
self.count | ||
} | ||
} | ||
}; | ||
|
||
if count == 0.0 { | ||
Ok(ScalarValue::Float64(None)) | ||
} else { | ||
Ok(ScalarValue::Float64(Some(self.algo_const / count))) | ||
} | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/// Enum used for differentiating population and sample for statistical functions | ||
#[derive(PartialEq, Eq, Debug, Clone, Copy)] | ||
pub enum StatsType { | ||
/// Population | ||
Population, | ||
/// Sample | ||
Sample, | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It is better to mention why we need to port it in Comet.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Comment added.