Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Port Datafusion Covariance to Comet #234

Merged
merged 9 commits into from
Apr 18, 2024
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions EXPRESSIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,3 +101,6 @@ The following Spark expressions are currently available:
+ BitAnd
+ BitOr
+ BitXor
+ BoolAnd
+ BoolOr
+ Covariance
308 changes: 308 additions & 0 deletions core/src/execution/datafusion/expressions/covariance.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

use std::{any::Any, sync::Arc};

use crate::execution::datafusion::expressions::stats::StatsType;
use arrow::{
array::{ArrayRef, Float64Array},
compute::cast,
datatypes::{DataType, Field},
};
use datafusion::logical_expr::Accumulator;
use datafusion_common::{
downcast_value, unwrap_or_internal_err, DataFusionError, Result, ScalarValue,
};
use datafusion_physical_expr::{
aggregate::utils::down_cast_any_ref, expressions::format_state_name, AggregateExpr,
PhysicalExpr,
};

/// COVAR_SAMP and COVAR_POP aggregate expression
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is better to mention why we need to port it in Comet.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comment added.

#[derive(Debug, Clone)]
pub struct Covariance {
name: String,
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
Comment on lines +44 to +45
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is there better names for these two children expressions?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Spark uses left and right.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will leave this as is unless you prefer left and right.

stats_type: StatsType,
}

impl Covariance {
/// Create a new COVAR aggregate function
pub fn new(
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
stats_type: StatsType,
) -> Self {
// the result of covariance just support FLOAT64 data type.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
expr1,
expr2,
stats_type,
}
}
}

impl AggregateExpr for Covariance {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, DataType::Float64, true))
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CovarianceAccumulator::try_new(self.stats_type)?))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean2"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "algo_const"),
DataType::Float64,
true,
),
])
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr1.clone(), self.expr2.clone()]
}

fn name(&self) -> &str {
&self.name
}
}

impl PartialEq<dyn Any> for Covariance {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.expr1.eq(&x.expr1)
&& self.expr2.eq(&x.expr2)
&& self.stats_type == x.stats_type
})
.unwrap_or(false)
}
}

/// An accumulator to compute covariance
#[derive(Debug)]
pub struct CovarianceAccumulator {
algo_const: f64,
mean1: f64,
mean2: f64,
count: f64,
stats_type: StatsType,
}

impl CovarianceAccumulator {
/// Creates a new `CovarianceAccumulator`
pub fn try_new(s_type: StatsType) -> Result<Self> {
Ok(Self {
algo_const: 0_f64,
mean1: 0_f64,
mean2: 0_f64,
count: 0_f64,
stats_type: s_type,
})
}

pub fn get_count(&self) -> f64 {
self.count
}

pub fn get_mean1(&self) -> f64 {
self.mean1
}

pub fn get_mean2(&self) -> f64 {
self.mean2
}

pub fn get_algo_const(&self) -> f64 {
self.algo_const
}
}

impl Accumulator for CovarianceAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.count),
ScalarValue::from(self.mean1),
ScalarValue::from(self.mean2),
ScalarValue::from(self.algo_const),
])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;

let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);
let new_count = self.count + 1.0;
let delta1 = value1 - self.mean1;
let new_mean1 = delta1 / new_count + self.mean1;
let delta2 = value2 - self.mean2;
let new_mean2 = delta2 / new_count + self.mean2;
let new_c = delta1 * (value2 - new_mean2) + self.algo_const;

self.count += 1.0;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);

let new_count = self.count - 1.0;
let delta1 = self.mean1 - value1;
let new_mean1 = delta1 / new_count + self.mean1;
let delta2 = self.mean2 - value2;
let new_mean2 = delta2 / new_count + self.mean2;
let new_c = self.algo_const - delta1 * (new_mean2 - value2);

self.count -= 1.0;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], Float64Array);
let means1 = downcast_value!(states[1], Float64Array);
let means2 = downcast_value!(states[2], Float64Array);
let cs = downcast_value!(states[3], Float64Array);

for i in 0..counts.len() {
let c = counts.value(i);
if c == 0.0 {
continue;
}
let new_count = self.count + c;
let new_mean1 = self.mean1 * self.count / new_count + means1.value(i) * c / new_count;
let new_mean2 = self.mean2 * self.count / new_count + means2.value(i) * c / new_count;
let delta1 = self.mean1 - means1.value(i);
let delta2 = self.mean2 - means2.value(i);
let new_c =
self.algo_const + cs.value(i) + delta1 * delta2 * self.count * c / new_count;

self.count = new_count;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}

fn evaluate(&mut self) -> Result<ScalarValue> {
let count = match self.stats_type {
StatsType::Population => self.count,
StatsType::Sample => {
if self.count > 0.0 {
self.count - 1.0
} else {
self.count
}
}
};

if count == 0.0 {
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(Some(self.algo_const / count)))
}
}

fn size(&self) -> usize {
std::mem::size_of_val(self)
}
}
2 changes: 2 additions & 0 deletions core/src/execution/datafusion/expressions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ pub use normalize_nan::NormalizeNaNAndZero;
pub mod avg;
pub mod avg_decimal;
pub mod bloom_filter_might_contain;
pub mod covariance;
pub mod stats;
pub mod strings;
pub mod subquery;
pub mod sum_decimal;
Expand Down
27 changes: 27 additions & 0 deletions core/src/execution/datafusion/expressions/stats.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/// Enum used for differentiating population and sample for statistical functions
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum StatsType {
/// Population
Population,
/// Sample
Sample,
}
26 changes: 26 additions & 0 deletions core/src/execution/datafusion/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,10 @@ use crate::{
bloom_filter_might_contain::BloomFilterMightContain,
cast::Cast,
checkoverflow::CheckOverflow,
covariance::Covariance,
if_expr::IfExpr,
scalar_funcs::create_comet_physical_fun,
stats::StatsType,
strings::{Contains, EndsWith, Like, StartsWith, StringSpaceExec, SubstringExec},
subquery::Subquery,
sum_decimal::SumDecimal,
Expand Down Expand Up @@ -1180,6 +1182,30 @@ impl PhysicalPlanner {
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(BitXor::new(child, "bit_xor", datatype)))
}
AggExprStruct::CovSample(expr) => {
let child1 = self.create_expr(expr.child1.as_ref().unwrap(), schema.clone())?;
let child2 = self.create_expr(expr.child2.as_ref().unwrap(), schema.clone())?;
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(Covariance::new(
child1,
child2,
"covariance",
datatype,
StatsType::Sample,
)))
}
AggExprStruct::CovPopulation(expr) => {
let child1 = self.create_expr(expr.child1.as_ref().unwrap(), schema.clone())?;
let child2 = self.create_expr(expr.child2.as_ref().unwrap(), schema.clone())?;
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(Covariance::new(
child1,
child2,
"covariance_pop",
datatype,
StatsType::Population,
)))
}
}
}

Expand Down
Loading
Loading