Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

minor: refactor to move decodeBatches to broadcast exchange code as private function #1195

Merged
merged 1 commit into from
Dec 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -19,20 +19,24 @@

package org.apache.spark.sql.comet

import java.io.DataInputStream
import java.nio.channels.Channels
import java.util.UUID
import java.util.concurrent.{Future, TimeoutException, TimeUnit}

import scala.concurrent.{ExecutionContext, Promise}
import scala.concurrent.duration.NANOSECONDS
import scala.util.control.NonFatal

import org.apache.spark.{broadcast, Partition, SparkContext, TaskContext}
import org.apache.spark.{broadcast, Partition, SparkContext, SparkEnv, TaskContext}
import org.apache.spark.comet.shims.ShimCometBroadcastExchangeExec
import org.apache.spark.io.CompressionCodec
import org.apache.spark.launcher.SparkLauncher
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Attribute
import org.apache.spark.sql.catalyst.plans.logical.Statistics
import org.apache.spark.sql.comet.execution.shuffle.ArrowReaderIterator
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.execution.{ColumnarToRowExec, SparkPlan, SQLExecution}
import org.apache.spark.sql.execution.adaptive.{AQEShuffleReadExec, ShuffleQueryStageExec}
Expand Down Expand Up @@ -299,7 +303,23 @@ class CometBatchRDD(
override def compute(split: Partition, context: TaskContext): Iterator[ColumnarBatch] = {
val partition = split.asInstanceOf[CometBatchPartition]
partition.value.value.toIterator
.flatMap(CometExec.decodeBatches(_, this.getClass.getSimpleName))
.flatMap(decodeBatches(_, this.getClass.getSimpleName))
}

/**
* Decodes the byte arrays back to ColumnarBatchs and put them into buffer.
*/
private def decodeBatches(bytes: ChunkedByteBuffer, source: String): Iterator[ColumnarBatch] = {
if (bytes.size == 0) {
return Iterator.empty
}

// use Spark's compression codec (LZ4 by default) and not Comet's compression
val codec = CompressionCodec.createCodec(SparkEnv.get.conf)
val cbbis = bytes.toInputStream()
val ins = new DataInputStream(codec.compressedInputStream(cbbis))
// batches are in Arrow IPC format
new ArrowReaderIterator(Channels.newChannel(ins), source)
}
}

Expand Down
35 changes: 3 additions & 32 deletions spark/src/main/scala/org/apache/spark/sql/comet/operators.scala
Original file line number Diff line number Diff line change
Expand Up @@ -19,22 +19,20 @@

package org.apache.spark.sql.comet

import java.io.{ByteArrayOutputStream, DataInputStream}
import java.nio.channels.Channels
import java.io.ByteArrayOutputStream

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

import org.apache.spark.{SparkEnv, TaskContext}
import org.apache.spark.io.CompressionCodec
import org.apache.spark.TaskContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeSet, Expression, NamedExpression, SortOrder}
import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, AggregateMode}
import org.apache.spark.sql.catalyst.optimizer.{BuildLeft, BuildRight, BuildSide}
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.physical.{HashPartitioning, Partitioning, PartitioningCollection, UnknownPartitioning}
import org.apache.spark.sql.comet.execution.shuffle.{ArrowReaderIterator, CometShuffleExchangeExec}
import org.apache.spark.sql.comet.execution.shuffle.CometShuffleExchangeExec
import org.apache.spark.sql.comet.plans.PartitioningPreservingUnaryExecNode
import org.apache.spark.sql.comet.util.Utils
import org.apache.spark.sql.execution.{BinaryExecNode, ColumnarToRowExec, ExecSubqueryExpression, ExplainUtils, LeafExecNode, ScalarSubquery, SparkPlan, UnaryExecNode}
Expand Down Expand Up @@ -78,18 +76,6 @@ abstract class CometExec extends CometPlan {
// outputPartitioning of SparkPlan, e.g., AQEShuffleReadExec.
override def outputPartitioning: Partitioning = originalPlan.outputPartitioning

/**
* Executes the Comet operator and returns the result as an iterator of ColumnarBatch.
*/
def executeColumnarCollectIterator(): (Long, Iterator[ColumnarBatch]) = {
val countsAndBytes = CometExec.getByteArrayRdd(this).collect()
val total = countsAndBytes.map(_._1).sum
val rows = countsAndBytes.iterator
.flatMap(countAndBytes =>
CometExec.decodeBatches(countAndBytes._2, this.getClass.getSimpleName))
(total, rows)
}

protected def setSubqueries(planId: Long, sparkPlan: SparkPlan): Unit = {
sparkPlan.children.foreach(setSubqueries(planId, _))

Expand Down Expand Up @@ -161,21 +147,6 @@ object CometExec {
Utils.serializeBatches(iter)
}
}

/**
* Decodes the byte arrays back to ColumnarBatchs and put them into buffer.
*/
def decodeBatches(bytes: ChunkedByteBuffer, source: String): Iterator[ColumnarBatch] = {
if (bytes.size == 0) {
return Iterator.empty
}

val codec = CompressionCodec.createCodec(SparkEnv.get.conf)
val cbbis = bytes.toInputStream()
val ins = new DataInputStream(codec.compressedInputStream(cbbis))

new ArrowReaderIterator(Channels.newChannel(ins), source)
}
}

/**
Expand Down
33 changes: 0 additions & 33 deletions spark/src/test/scala/org/apache/comet/exec/CometExecSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,6 @@ package org.apache.comet.exec
import java.sql.Date
import java.time.{Duration, Period}

import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.util.Random

import org.scalactic.source.Position
Expand Down Expand Up @@ -462,37 +460,6 @@ class CometExecSuite extends CometTestBase {
}
}

test("CometExec.executeColumnarCollectIterator can collect ColumnarBatch results") {
assume(isSpark34Plus, "ChunkedByteBuffer is not serializable before Spark 3.4+")
withSQLConf(CometConf.COMET_EXEC_ENABLED.key -> "true") {
withParquetTable((0 until 50).map(i => (i, i + 1)), "tbl") {
val df = sql("SELECT _1 + 1, _2 + 2 FROM tbl WHERE _1 > 3")

val nativeProject = find(df.queryExecution.executedPlan) {
case _: CometProjectExec => true
case _ => false
}.get.asInstanceOf[CometProjectExec]

val (rows, batches) = nativeProject.executeColumnarCollectIterator()
assert(rows == 46)

val column1 = mutable.ArrayBuffer.empty[Int]
val column2 = mutable.ArrayBuffer.empty[Int]

batches.foreach(batch => {
batch.rowIterator().asScala.foreach { row =>
assert(row.numFields == 2)
column1 += row.getInt(0)
column2 += row.getInt(1)
}
})

assert(column1.toArray.sorted === (4 until 50).map(_ + 1).toArray)
assert(column2.toArray.sorted === (5 until 51).map(_ + 2).toArray)
}
}
}

test("scalar subquery") {
val dataTypes =
Seq(
Expand Down
Loading