-
Notifications
You must be signed in to change notification settings - Fork 166
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Port Datafusion Covariance to Comet (#234)
* feat: Port Datafusion Covariance to Comet * feat: Port Datafusion Covariance to Comet * fmt * update EXPRESSIONS.md * combine COVAR_SAMP and COVAR_POP * fix fmt * address comment --------- Co-authored-by: Huaxin Gao <[email protected]> Co-authored-by: Liang-Chi Hsieh <[email protected]>
- Loading branch information
1 parent
9321be6
commit 4710d62
Showing
8 changed files
with
462 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
311 changes: 311 additions & 0 deletions
311
core/src/execution/datafusion/expressions/covariance.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,311 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
use std::{any::Any, sync::Arc}; | ||
|
||
use crate::execution::datafusion::expressions::stats::StatsType; | ||
use arrow::{ | ||
array::{ArrayRef, Float64Array}, | ||
compute::cast, | ||
datatypes::{DataType, Field}, | ||
}; | ||
use datafusion::logical_expr::Accumulator; | ||
use datafusion_common::{ | ||
downcast_value, unwrap_or_internal_err, DataFusionError, Result, ScalarValue, | ||
}; | ||
use datafusion_physical_expr::{ | ||
aggregate::utils::down_cast_any_ref, expressions::format_state_name, AggregateExpr, | ||
PhysicalExpr, | ||
}; | ||
|
||
/// COVAR_SAMP and COVAR_POP aggregate expression | ||
/// The implementation mostly is the same as the DataFusion's implementation. The reason | ||
/// we have our own implementation is that DataFusion has UInt64 for state_field count, | ||
/// while Spark has Double for count. | ||
#[derive(Debug, Clone)] | ||
pub struct Covariance { | ||
name: String, | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
stats_type: StatsType, | ||
} | ||
|
||
impl Covariance { | ||
/// Create a new COVAR aggregate function | ||
pub fn new( | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
name: impl Into<String>, | ||
data_type: DataType, | ||
stats_type: StatsType, | ||
) -> Self { | ||
// the result of covariance just support FLOAT64 data type. | ||
assert!(matches!(data_type, DataType::Float64)); | ||
Self { | ||
name: name.into(), | ||
expr1, | ||
expr2, | ||
stats_type, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for Covariance { | ||
/// Return a reference to Any that can be used for downcasting | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, DataType::Float64, true)) | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(CovarianceAccumulator::try_new(self.stats_type)?)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new( | ||
format_state_name(&self.name, "count"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean1"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean2"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "algo_const"), | ||
DataType::Float64, | ||
true, | ||
), | ||
]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
vec![self.expr1.clone(), self.expr2.clone()] | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
} | ||
|
||
impl PartialEq<dyn Any> for Covariance { | ||
fn eq(&self, other: &dyn Any) -> bool { | ||
down_cast_any_ref(other) | ||
.downcast_ref::<Self>() | ||
.map(|x| { | ||
self.name == x.name | ||
&& self.expr1.eq(&x.expr1) | ||
&& self.expr2.eq(&x.expr2) | ||
&& self.stats_type == x.stats_type | ||
}) | ||
.unwrap_or(false) | ||
} | ||
} | ||
|
||
/// An accumulator to compute covariance | ||
#[derive(Debug)] | ||
pub struct CovarianceAccumulator { | ||
algo_const: f64, | ||
mean1: f64, | ||
mean2: f64, | ||
count: f64, | ||
stats_type: StatsType, | ||
} | ||
|
||
impl CovarianceAccumulator { | ||
/// Creates a new `CovarianceAccumulator` | ||
pub fn try_new(s_type: StatsType) -> Result<Self> { | ||
Ok(Self { | ||
algo_const: 0_f64, | ||
mean1: 0_f64, | ||
mean2: 0_f64, | ||
count: 0_f64, | ||
stats_type: s_type, | ||
}) | ||
} | ||
|
||
pub fn get_count(&self) -> f64 { | ||
self.count | ||
} | ||
|
||
pub fn get_mean1(&self) -> f64 { | ||
self.mean1 | ||
} | ||
|
||
pub fn get_mean2(&self) -> f64 { | ||
self.mean2 | ||
} | ||
|
||
pub fn get_algo_const(&self) -> f64 { | ||
self.algo_const | ||
} | ||
} | ||
|
||
impl Accumulator for CovarianceAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.count), | ||
ScalarValue::from(self.mean1), | ||
ScalarValue::from(self.mean2), | ||
ScalarValue::from(self.algo_const), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||
|
||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||
|
||
for i in 0..values1.len() { | ||
let value1 = if values1.is_valid(i) { | ||
arr1.next() | ||
} else { | ||
None | ||
}; | ||
let value2 = if values2.is_valid(i) { | ||
arr2.next() | ||
} else { | ||
None | ||
}; | ||
|
||
if value1.is_none() || value2.is_none() { | ||
continue; | ||
} | ||
|
||
let value1 = unwrap_or_internal_err!(value1); | ||
let value2 = unwrap_or_internal_err!(value2); | ||
let new_count = self.count + 1.0; | ||
let delta1 = value1 - self.mean1; | ||
let new_mean1 = delta1 / new_count + self.mean1; | ||
let delta2 = value2 - self.mean2; | ||
let new_mean2 = delta2 / new_count + self.mean2; | ||
let new_c = delta1 * (value2 - new_mean2) + self.algo_const; | ||
|
||
self.count += 1.0; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||
|
||
for i in 0..values1.len() { | ||
let value1 = if values1.is_valid(i) { | ||
arr1.next() | ||
} else { | ||
None | ||
}; | ||
let value2 = if values2.is_valid(i) { | ||
arr2.next() | ||
} else { | ||
None | ||
}; | ||
|
||
if value1.is_none() || value2.is_none() { | ||
continue; | ||
} | ||
|
||
let value1 = unwrap_or_internal_err!(value1); | ||
let value2 = unwrap_or_internal_err!(value2); | ||
|
||
let new_count = self.count - 1.0; | ||
let delta1 = self.mean1 - value1; | ||
let new_mean1 = delta1 / new_count + self.mean1; | ||
let delta2 = self.mean2 - value2; | ||
let new_mean2 = delta2 / new_count + self.mean2; | ||
let new_c = self.algo_const - delta1 * (new_mean2 - value2); | ||
|
||
self.count -= 1.0; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let counts = downcast_value!(states[0], Float64Array); | ||
let means1 = downcast_value!(states[1], Float64Array); | ||
let means2 = downcast_value!(states[2], Float64Array); | ||
let cs = downcast_value!(states[3], Float64Array); | ||
|
||
for i in 0..counts.len() { | ||
let c = counts.value(i); | ||
if c == 0.0 { | ||
continue; | ||
} | ||
let new_count = self.count + c; | ||
let new_mean1 = self.mean1 * self.count / new_count + means1.value(i) * c / new_count; | ||
let new_mean2 = self.mean2 * self.count / new_count + means2.value(i) * c / new_count; | ||
let delta1 = self.mean1 - means1.value(i); | ||
let delta2 = self.mean2 - means2.value(i); | ||
let new_c = | ||
self.algo_const + cs.value(i) + delta1 * delta2 * self.count * c / new_count; | ||
|
||
self.count = new_count; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let count = match self.stats_type { | ||
StatsType::Population => self.count, | ||
StatsType::Sample => { | ||
if self.count > 0.0 { | ||
self.count - 1.0 | ||
} else { | ||
self.count | ||
} | ||
} | ||
}; | ||
|
||
if count == 0.0 { | ||
Ok(ScalarValue::Float64(None)) | ||
} else { | ||
Ok(ScalarValue::Float64(Some(self.algo_const / count))) | ||
} | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/// Enum used for differentiating population and sample for statistical functions | ||
#[derive(PartialEq, Eq, Debug, Clone, Copy)] | ||
pub enum StatsType { | ||
/// Population | ||
Population, | ||
/// Sample | ||
Sample, | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.