Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kafka metrics #32402

Merged
merged 5 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions runners/google-cloud-dataflow-java/worker/build.gradle
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ def sdk_provided_project_dependencies = [
":runners:google-cloud-dataflow-java",
":sdks:java:extensions:avro",
":sdks:java:extensions:google-cloud-platform-core",
":sdks:java:io:kafka", // For metric propagation into worker
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is bad code coupling. Fetching static name isn't sufficient justification to introduce this mandatory dependency to Dataflow worker jar. This also makes confluent repository mandatory for user project.

":sdks:java:io:google-cloud-platform",
]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,13 +32,15 @@
import java.util.Map.Entry;
import java.util.Optional;
import org.apache.beam.sdk.io.gcp.bigquery.BigQuerySinkMetrics;
import org.apache.beam.sdk.io.kafka.KafkaSinkMetrics;
import org.apache.beam.sdk.metrics.LabeledMetricNameUtils;
import org.apache.beam.sdk.metrics.MetricName;
import org.apache.beam.sdk.util.HistogramData;

/**
* Converts metric updates to {@link PerStepNamespaceMetrics} protos. Currently we only support
* converting metrics from {@link BigQuerySinkMetrics} with this converter.
* converting metrics from {@link BigQuerySinkMetrics} and from {@link KafkaSinkMetrics} with this
* converter.
*/
public class MetricsToPerStepNamespaceMetricsConverter {

Expand All @@ -65,7 +67,10 @@ private static Optional<MetricValue> convertCounterToMetricValue(
MetricName metricName,
Long value,
Map<MetricName, LabeledMetricNameUtils.ParsedMetricName> parsedPerWorkerMetricsCache) {
if (value == 0 || !metricName.getNamespace().equals(BigQuerySinkMetrics.METRICS_NAMESPACE)) {

Naireen marked this conversation as resolved.
Show resolved Hide resolved
if (value == 0
|| (!metricName.getNamespace().equals(BigQuerySinkMetrics.METRICS_NAMESPACE)
&& !metricName.getNamespace().equals(KafkaSinkMetrics.METRICS_NAMESPACE))) {
return Optional.empty();
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@
import org.apache.beam.sdk.fn.JvmInitializers;
import org.apache.beam.sdk.io.FileSystems;
import org.apache.beam.sdk.io.gcp.bigquery.BigQuerySinkMetrics;
import org.apache.beam.sdk.io.kafka.KafkaSinkMetrics;
import org.apache.beam.sdk.metrics.MetricsEnvironment;
import org.apache.beam.sdk.util.construction.CoderTranslation;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.annotations.VisibleForTesting;
Expand Down Expand Up @@ -668,6 +669,10 @@ public static void main(String[] args) throws Exception {
enableBigQueryMetrics();
}

if (DataflowRunner.hasExperiment(options, "enable_kafka_metrics")) {
KafkaSinkMetrics.setSupportKafkaMetrics(true);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Instead of setting IO flags in worker, one can utilize the JvmInitializer.runBeforeProcessing mechanism that is introduce a JvmInitializer implementation in org.apache.beam.sdk.io.kafka to initialize the flags on worker. This avoids the need of kafka dependency

}

JvmInitializers.runBeforeProcessing(options);
worker.startStatusPages();
worker.start();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
import org.apache.beam.runners.dataflow.worker.counters.DataflowCounterUpdateExtractor;
import org.apache.beam.runners.dataflow.worker.counters.NameContext;
import org.apache.beam.sdk.io.gcp.bigquery.BigQuerySinkMetrics;
import org.apache.beam.sdk.io.kafka.KafkaSinkMetrics;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.collect.Iterables;

/** Contains a few of the stage specific fields. E.g. metrics container registry, counters etc. */
Expand Down Expand Up @@ -118,7 +119,9 @@ public List<PerStepNamespaceMetrics> extractPerWorkerMetricValues() {
private void translateKnownPerWorkerCounters(List<PerStepNamespaceMetrics> metrics) {
for (PerStepNamespaceMetrics perStepnamespaceMetrics : metrics) {
if (!BigQuerySinkMetrics.METRICS_NAMESPACE.equals(
perStepnamespaceMetrics.getMetricsNamespace())) {
perStepnamespaceMetrics.getMetricsNamespace())
&& !KafkaSinkMetrics.METRICS_NAMESPACE.equals(
perStepnamespaceMetrics.getMetricsNamespace())) {
continue;
}
for (MetricValue metric : perStepnamespaceMetrics.getMetricValues()) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,6 @@ public void testExtractPerWorkerMetricUpdates_populatedMetrics() {
.setMetricsNamespace("BigQuerySink")
.setMetricValues(Collections.singletonList(expectedCounter));

// Expected histogram metric
List<Long> bucketCounts = Collections.singletonList(1L);

Linear linearOptions = new Linear().setNumberOfBuckets(10).setWidth(10.0).setStart(0.0);
Expand All @@ -393,6 +392,44 @@ public void testExtractPerWorkerMetricUpdates_populatedMetrics() {
assertThat(updates, containsInAnyOrder(histograms, counters));
}

@Test
public void testExtractPerWorkerMetricUpdatesKafka_populatedMetrics() {
StreamingStepMetricsContainer.setEnablePerWorkerMetrics(true);

MetricName histogramMetricName = MetricName.named("KafkaSink", "histogram");
HistogramData.LinearBuckets linearBuckets = HistogramData.LinearBuckets.of(0, 10, 10);
c2.getPerWorkerHistogram(histogramMetricName, linearBuckets).update(5.0);

Iterable<PerStepNamespaceMetrics> updates =
StreamingStepMetricsContainer.extractPerWorkerMetricUpdates(registry);

// Expected histogram metric
List<Long> bucketCounts = Collections.singletonList(1L);

Linear linearOptions = new Linear().setNumberOfBuckets(10).setWidth(10.0).setStart(0.0);
BucketOptions bucketOptions = new BucketOptions().setLinear(linearOptions);

DataflowHistogramValue linearHistogram =
new DataflowHistogramValue()
.setCount(1L)
.setBucketOptions(bucketOptions)
.setBucketCounts(bucketCounts);

MetricValue expectedHistogram =
new MetricValue()
.setMetric("histogram")
.setMetricLabels(new HashMap<>())
.setValueHistogram(linearHistogram);

PerStepNamespaceMetrics histograms =
new PerStepNamespaceMetrics()
.setOriginalStep("s2")
.setMetricsNamespace("KafkaSink")
.setMetricValues(Collections.singletonList(expectedHistogram));

assertThat(updates, containsInAnyOrder(histograms));
}

@Test
public void testExtractPerWorkerMetricUpdates_emptyMetrics() {
StreamingStepMetricsContainer.setEnablePerWorkerMetrics(true);
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.beam.sdk.io.kafka;

import com.google.auto.value.AutoValue;
import java.time.Duration;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicBoolean;
import org.apache.beam.sdk.metrics.Histogram;
import org.apache.beam.sdk.util.Preconditions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/** Stores and exports metrics for a batch of Kafka Client RPCs. */
public interface KafkaMetrics {

void updateSuccessfulRpcMetrics(String topic, Duration elapsedTime);

void updateKafkaMetrics();

/** No-op implementation of {@code KafkaResults}. */
class NoOpKafkaMetrics implements KafkaMetrics {
private NoOpKafkaMetrics() {}

@Override
public void updateSuccessfulRpcMetrics(String topic, Duration elapsedTime) {}

@Override
public void updateKafkaMetrics() {}

private static NoOpKafkaMetrics singleton = new NoOpKafkaMetrics();

static NoOpKafkaMetrics getInstance() {
return singleton;
}
}

/**
* Metrics of a batch of RPCs. Member variables are thread safe; however, this class does not have
* atomicity across member variables.
*
* <p>Expected usage: A number of threads record metrics in an instance of this class with the
* member methods. Afterwards, a single thread should call {@code updateStreamingInsertsMetrics}
* which will export all counters metrics and RPC latency distribution metrics to the underlying
* {@code perWorkerMetrics} container. Afterwards, metrics should not be written/read from this
* object.
*/
@AutoValue
abstract class KafkaMetricsImpl implements KafkaMetrics {

private static final Logger LOG = LoggerFactory.getLogger(KafkaMetricsImpl.class);

static HashMap<String, Histogram> latencyHistograms = new HashMap<String, Histogram>();

abstract HashMap<String, ConcurrentLinkedQueue<Duration>> perTopicRpcLatencies();

abstract AtomicBoolean isWritable();

public static KafkaMetricsImpl create() {
return new AutoValue_KafkaMetrics_KafkaMetricsImpl(
new HashMap<String, ConcurrentLinkedQueue<Duration>>(), new AtomicBoolean(true));
}

/** Record the rpc status and latency of a successful Kafka poll RPC call. */
@Override
public void updateSuccessfulRpcMetrics(String topic, Duration elapsedTime) {
if (isWritable().get()) {
ConcurrentLinkedQueue<Duration> latencies = perTopicRpcLatencies().get(topic);
if (latencies == null) {
latencies = new ConcurrentLinkedQueue<Duration>();
latencies.add(elapsedTime);
perTopicRpcLatencies().put(topic, latencies);
} else {
latencies.add(elapsedTime);
}
}
}

/** Record rpc latency histogram metrics for all recorded topics. */
private void recordRpcLatencyMetrics() {
for (Map.Entry<String, ConcurrentLinkedQueue<Duration>> topicLatencies :
perTopicRpcLatencies().entrySet()) {
Histogram topicHistogram;
if (latencyHistograms.containsKey(topicLatencies.getKey())) {
topicHistogram = latencyHistograms.get(topicLatencies.getKey());
} else {
topicHistogram =
KafkaSinkMetrics.createRPCLatencyHistogram(
KafkaSinkMetrics.RpcMethod.POLL, topicLatencies.getKey());
latencyHistograms.put(topicLatencies.getKey(), topicHistogram);
}
// update all the latencies
for (Duration d : topicLatencies.getValue()) {
Preconditions.checkArgumentNotNull(topicHistogram);
topicHistogram.update(d.toMillis());
}
}
}

/**
* Export all metrics recorded in this instance to the underlying {@code perWorkerMetrics}
* containers. This function will only report metrics once per instance. Subsequent calls to
* this function will no-op.
*/
@Override
public void updateKafkaMetrics() {
if (!isWritable().compareAndSet(true, false)) {
johnjcasey marked this conversation as resolved.
Show resolved Hide resolved
LOG.warn("Updating stale Kafka metrics container");
return;
}
recordRpcLatencyMetrics();
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.beam.sdk.io.kafka;

import org.apache.beam.sdk.metrics.DelegatingHistogram;
import org.apache.beam.sdk.metrics.Histogram;
import org.apache.beam.sdk.metrics.LabeledMetricNameUtils;
import org.apache.beam.sdk.metrics.MetricName;
import org.apache.beam.sdk.util.HistogramData;

/**
* Helper class to create per worker metrics for Kafka Sink stages.
*
* <p>Metrics will be in the namespace 'KafkaSink' and have their name formatted as:
*
* <p>'{baseName}-{metricLabelKey1}:{metricLabelVal1};...{metricLabelKeyN}:{metricLabelValN};' ????
*/

// TODO, refactor out common parts for BQ sink, so it can be reused with other sinks, eg, GCS?
// @SuppressWarnings("unused")
public class KafkaSinkMetrics {
private static boolean supportKafkaMetrics = true;

public static final String METRICS_NAMESPACE = "KafkaSink";

// Base Metric names
private static final String RPC_LATENCY = "RpcLatency";

// Kafka Consumer Method names
enum RpcMethod {
POLL,
}

// Metric labels
private static final String TOPIC_LABEL = "topic_name";
private static final String RPC_METHOD = "rpc_method";

/**
* Creates an Histogram metric to record RPC latency. Metric will have name.
*
* <p>'RpcLatency*rpc_method:{method};topic_name:{topic};'
*
* @param method Kafka method associated with this metric.
* @param topic Kafka topic associated with this metric.
* @return Histogram with exponential buckets with a sqrt(2) growth factor.
*/
public static Histogram createRPCLatencyHistogram(RpcMethod method, String topic) {
LabeledMetricNameUtils.MetricNameBuilder nameBuilder =
LabeledMetricNameUtils.MetricNameBuilder.baseNameBuilder(RPC_LATENCY);
nameBuilder.addLabel(RPC_METHOD, method.toString());
nameBuilder.addLabel(TOPIC_LABEL, topic);

MetricName metricName = nameBuilder.build(METRICS_NAMESPACE);
HistogramData.BucketType buckets = HistogramData.ExponentialBuckets.of(1, 17);

return new DelegatingHistogram(metricName, buckets, false, true);
}

/**
* Returns a container to store metrics for Kafka metrics in Unbounded Readed. If these metrics
* are disabled, then we return a no-op container.
*/
static KafkaMetrics kafkaMetrics() {
if (supportKafkaMetrics) {
return KafkaMetrics.KafkaMetricsImpl.create();
} else {
return KafkaMetrics.NoOpKafkaMetrics.getInstance();
}
}

public static void setSupportKafkaMetrics(boolean supportKafkaMetrics) {
KafkaSinkMetrics.supportKafkaMetrics = supportKafkaMetrics;
}
}
Loading
Loading