-
Notifications
You must be signed in to change notification settings - Fork 4.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add tests of using ib.collect(...) without InteractiveRunner.
- Loading branch information
Showing
1 changed file
with
218 additions
and
0 deletions.
There are no files selected for viewing
218 changes: 218 additions & 0 deletions
218
sdks/python/apache_beam/runners/interactive/non_interactive_runner_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
"""Tests for interactive utilities without explicitly using InteractiveRunner. | ||
""" | ||
|
||
# pytype: skip-file | ||
|
||
import importlib | ||
import sys | ||
import unittest | ||
from collections import defaultdict | ||
from typing import NamedTuple | ||
|
||
import pandas as pd | ||
|
||
import apache_beam as beam | ||
from apache_beam.dataframe.convert import to_dataframe | ||
from apache_beam.runners.direct import direct_runner | ||
from apache_beam.runners.interactive import interactive_beam as ib | ||
from apache_beam.runners.interactive.testing.mock_env import isolated_env | ||
from apache_beam.transforms.window import GlobalWindow | ||
from apache_beam.utils.windowed_value import PaneInfo | ||
from apache_beam.utils.windowed_value import PaneInfoTiming | ||
|
||
|
||
def print_with_message(msg): | ||
def printer(elem): | ||
print(msg, elem) | ||
return elem | ||
|
||
return printer | ||
|
||
|
||
class Record(NamedTuple): | ||
name: str | ||
age: int | ||
height: int | ||
|
||
|
||
_side_effects = defaultdict(int) | ||
|
||
|
||
def cause_side_effect(elem): | ||
mod = importlib.import_module(__name__) | ||
mod._side_effects[elem] += 1 | ||
return elem | ||
|
||
|
||
def count_side_effects(elem): | ||
mod = importlib.import_module(__name__) | ||
return mod._side_effects[elem] | ||
|
||
|
||
def clear_side_effect(): | ||
mod = importlib.import_module(__name__) | ||
mod._side_effects.clear() | ||
|
||
|
||
@isolated_env | ||
class NonInteractiveRunnerTest(unittest.TestCase): | ||
@unittest.skipIf(sys.platform == "win32", "[BEAM-10627]") | ||
def test_basic(self): | ||
clear_side_effect() | ||
p = beam.Pipeline(direct_runner.DirectRunner()) | ||
|
||
# Initial collection runs the pipeline. | ||
pcoll1 = p | beam.Create(['a', 'b', 'c']) | beam.Map(cause_side_effect) | ||
collected1 = ib.collect(pcoll1) | ||
self.assertEqual(set(collected1[0]), set(['a', 'b', 'c'])) | ||
self.assertEqual(count_side_effects('a'), 1) | ||
|
||
# Collecting the PCollection again uses the cache. | ||
collected1again = ib.collect(pcoll1) | ||
self.assertEqual(set(collected1again[0]), set(['a', 'b', 'c'])) | ||
self.assertEqual(count_side_effects('a'), 1) | ||
|
||
# Using the PCollection uses the cache. | ||
pcoll2 = pcoll1 | beam.Map(str.upper) | ||
collected2 = ib.collect(pcoll2) | ||
self.assertEqual(set(collected2[0]), set(['A', 'B', 'C'])) | ||
self.assertEqual(count_side_effects('a'), 1) | ||
|
||
# Force re-computation. | ||
collected2 = ib.collect(pcoll2, force_compute=True) | ||
self.assertEqual(set(collected2[0]), set(['A', 'B', 'C'])) | ||
self.assertEqual(count_side_effects('a'), 2) | ||
|
||
@unittest.skipIf(sys.platform == "win32", "[BEAM-10627]") | ||
def test_wordcount(self): | ||
class WordExtractingDoFn(beam.DoFn): | ||
def process(self, element): | ||
text_line = element.strip() | ||
words = text_line.split() | ||
return words | ||
|
||
p = beam.Pipeline(runner=direct_runner.DirectRunner()) | ||
|
||
# Count the occurrences of each word. | ||
counts = ( | ||
p | ||
| beam.Create(['to be or not to be that is the question']) | ||
| 'split' >> beam.ParDo(WordExtractingDoFn()) | ||
| 'pair_with_one' >> beam.Map(lambda x: (x, 1)) | ||
| 'group' >> beam.GroupByKey() | ||
| 'count' >> beam.Map(lambda wordones: (wordones[0], sum(wordones[1])))) | ||
|
||
actual = ib.collect(counts) | ||
self.assertSetEqual( | ||
set(zip(actual[0], actual[1])), | ||
set([ | ||
('or', 1), | ||
('that', 1), | ||
('be', 2), | ||
('is', 1), | ||
('question', 1), | ||
('to', 2), | ||
('the', 1), | ||
('not', 1), | ||
])) | ||
|
||
# Truncate the precision to millis because the window coder uses millis | ||
# as units then gets upcast to micros. | ||
end_of_window = (GlobalWindow().max_timestamp().micros // 1000) * 1000 | ||
df_counts = ib.collect(counts, include_window_info=True, n=10) | ||
df_expected = pd.DataFrame({ | ||
0: list(actual[0]), | ||
1: list(actual[1]), | ||
'event_time': [end_of_window] * len(actual), | ||
'windows': [[GlobalWindow()]] * len(actual), | ||
'pane_info': [PaneInfo(True, True, PaneInfoTiming.ON_TIME, 0, 0)] * | ||
len(actual) | ||
}, | ||
) | ||
|
||
pd.testing.assert_frame_equal(df_expected, df_counts) | ||
|
||
@unittest.skipIf(sys.platform == "win32", "[BEAM-10627]") | ||
def test_dataframes(self): | ||
p = beam.Pipeline(runner=direct_runner.DirectRunner()) | ||
data = p | beam.Create( | ||
[1, 2, 3]) | beam.Map(lambda x: beam.Row(square=x * x, cube=x * x * x)) | ||
df = to_dataframe(data) | ||
|
||
df_expected = pd.DataFrame({'square': [1, 4, 9], 'cube': [1, 8, 27]}) | ||
pd.testing.assert_frame_equal( | ||
df_expected, ib.collect(df, n=10).reset_index(drop=True)) | ||
|
||
@unittest.skipIf(sys.platform == "win32", "[BEAM-10627]") | ||
def test_dataframes_with_grouped_index(self): | ||
p = beam.Pipeline(runner=direct_runner.DirectRunner()) | ||
|
||
data = [ | ||
Record('a', 20, 170), | ||
Record('a', 30, 170), | ||
Record('b', 22, 180), | ||
Record('c', 18, 150) | ||
] | ||
|
||
aggregate = lambda df: df.groupby('height').mean(numeric_only=True) | ||
|
||
deferred_df = aggregate(to_dataframe(p | beam.Create(data))) | ||
df_expected = aggregate(pd.DataFrame(data)) | ||
|
||
pd.testing.assert_frame_equal(df_expected, ib.collect(deferred_df, n=10)) | ||
|
||
@unittest.skipIf(sys.platform == "win32", "[BEAM-10627]") | ||
def test_dataframes_with_multi_index(self): | ||
p = beam.Pipeline(runner=direct_runner.DirectRunner()) | ||
|
||
data = [ | ||
Record('a', 20, 170), | ||
Record('a', 30, 170), | ||
Record('b', 22, 180), | ||
Record('c', 18, 150) | ||
] | ||
|
||
aggregate = lambda df: df.groupby(['name', 'height']).mean() | ||
|
||
deferred_df = aggregate(to_dataframe(p | beam.Create(data))) | ||
df_input = pd.DataFrame(data) | ||
df_input.name = df_input.name.astype(pd.StringDtype()) | ||
df_expected = aggregate(df_input) | ||
|
||
pd.testing.assert_frame_equal(df_expected, ib.collect(deferred_df, n=10)) | ||
|
||
@unittest.skipIf(sys.platform == "win32", "[BEAM-10627]") | ||
def test_dataframes_same_cell_twice(self): | ||
p = beam.Pipeline(runner=direct_runner.DirectRunner()) | ||
data = p | beam.Create( | ||
[1, 2, 3]) | beam.Map(lambda x: beam.Row(square=x * x, cube=x * x * x)) | ||
df = to_dataframe(data) | ||
|
||
df_expected = pd.DataFrame({'square': [1, 4, 9], 'cube': [1, 8, 27]}) | ||
pd.testing.assert_series_equal( | ||
df_expected['square'], | ||
ib.collect(df['square'], n=10).reset_index(drop=True)) | ||
pd.testing.assert_series_equal( | ||
df_expected['cube'], | ||
ib.collect(df['cube'], n=10).reset_index(drop=True)) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |