Skip to content

anchitbhuhan/ML101

Repository files navigation

ML101

Parkinsons Disease Parkinsons Telemonitoring Data Set

Abstract: Oxford Parkinson's Disease Telemonitoring Dataset

============================================================

Data Set Characteristics: Multivariate Attribute Characteristics: Integer, Real Associated Tasks: Regression Number of Instances: 5875 Number of Attributes: 26 Area: Life Date Donated: 2009-10-29

============================================================

SOURCE:

The dataset was created by Athanasios Tsanas (tsanasthanasis '@' gmail.com) and Max Little (littlem '@' physics.ox.ac.uk) of the University of Oxford, in collaboration with 10 medical centers in the US and Intel Corporation who developed the telemonitoring device to record the speech signals. The original study used a range of linear and nonlinear regression methods to predict the clinician's Parkinson's disease symptom score on the UPDRS scale.

============================================================

DATA SET INFORMATION:

This dataset is composed of a range of biomedical voice measurements from 42 people with early-stage Parkinson's disease recruited to a six-month trial of a telemonitoring device for remote symptom progression monitoring. The recordings were automatically captured in the patient's homes.

Columns in the table contain subject number, subject age, subject gender, time interval from baseline recruitment date, motor UPDRS, total UPDRS, and 16 biomedical voice measures. Each row corresponds to one of 5,875 voice recording from these individuals. The main aim of the data is to predict the motor and total UPDRS scores ('motor_UPDRS' and 'total_UPDRS') from the 16 voice measures.

The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around 200 recordings per patient, the subject number of the patient is identified in the first column. For further information or to pass on comments, please contact Athanasios Tsanas (tsanasthanasis '@' gmail.com) or Max Little (littlem '@' physics.ox.ac.uk).

Further details are contained in the following reference -- if you use this dataset, please cite: Athanasios Tsanas, Max A. Little, Patrick E. McSharry, Lorraine O. Ramig (2009), 'Accurate telemonitoring of Parkinson.s disease progression by non-invasive speech tests', IEEE Transactions on Biomedical Engineering (to appear).

Further details about the biomedical voice measures can be found in: Max A. Little, Patrick E. McSharry, Eric J. Hunter, Lorraine O. Ramig (2009), 'Suitability of dysphonia measurements for telemonitoring of Parkinson's disease', IEEE Transactions on Biomedical Engineering, 56(4):1015-1022

===========================================================

ATTRIBUTE INFORMATION:

subject# - Integer that uniquely identifies each subject age - Subject age sex - Subject gender '0' - male, '1' - female test_time - Time since recruitment into the trial. The integer part is the number of days since recruitment. motor_UPDRS - Clinician's motor UPDRS score, linearly interpolated total_UPDRS - Clinician's total UPDRS score, linearly interpolated Jitter(%),Jitter(Abs),Jitter:RAP,Jitter:PPQ5,Jitter:DDP - Several measures of variation in fundamental frequency Shimmer,Shimmer(dB),Shimmer:APQ3,Shimmer:APQ5,Shimmer:APQ11,Shimmer:DDA - Several measures of variation in amplitude NHR,HNR - Two measures of ratio of noise to tonal components in the voice RPDE - A nonlinear dynamical complexity measure DFA - Signal fractal scaling exponent PPE - A nonlinear measure of fundamental frequency variation

===========================================================

RELEVANT PAPERS:

Little MA, McSharry PE, Hunter EJ, Ramig LO (2009), 'Suitability of dysphonia measurements for telemonitoring of Parkinson's disease', IEEE Transactions on Biomedical Engineering, 56(4):1015-1022

Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. 'Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection', BioMedical Engineering OnLine 2007, 6:23 (26 June 2007)

===========================================================

CITATION REQUEST:

If you use this dataset, please cite the following paper: A Tsanas, MA Little, PE McSharry, LO Ramig (2009) 'Accurate telemonitoring of Parkinson.s disease progression by non-invasive speech tests', IEEE Transactions on Biomedical Engineering (to appear).

About

Parkinsons Disease

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •