Skip to content

Commit

Permalink
Merge pull request #114 from riship99/main
Browse files Browse the repository at this point in the history
I have uploaded Binary search tree codes
  • Loading branch information
aman-raza authored Oct 31, 2020
2 parents 29b6abe + 69ddc58 commit 3236193
Show file tree
Hide file tree
Showing 30 changed files with 1,637 additions and 0 deletions.
130 changes: 130 additions & 0 deletions Data-Structures-C/BST/01.BST_Operations[insert_delete_search].c
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
// Source - https://gist.github.com/mycodeschool
/* Deleting a node from Binary search tree */
#include<stdio.h>
#include<stdlib.h>

struct Node {
int data;
struct Node *left;
struct Node *right;
};
//Function to find minimum in a tree.
struct Node* FindMin(struct Node* root)
{
while(root->left != NULL) root = root->left;
return root;
}

// Function to search a delete a value from tree.
struct Node* Delete(struct Node *root, int data) {
if(root == NULL) return root;
else if(data < root->data) root->left = Delete(root->left,data);
else if (data > root->data) root->right = Delete(root->right,data);
// Wohoo... I found you, Get ready to be deleted
else {
// Case 1: No child
if(root->left == NULL && root->right == NULL) {
free(root);
root = NULL;
}
//Case 2: One child
else if(root->left == NULL) {
struct Node *temp = root;
root = root->right;
free(temp);
}
else if(root->right == NULL) {
struct Node *temp = root;
root = root->left;
free(temp);
}
// case 3: 2 children
else {
struct Node *temp = FindMin(root->right);
root->data = temp->data;
root->right = Delete(root->right,temp->data);
}
}
return root;
}

//Function to visit nodes in Inorder
void Inorder(struct Node *root) {
if(root == NULL) return;

Inorder(root->left); //Visit left subtree
printf("%d ",root->data); //Print data
Inorder(root->right); // Visit right subtree
}

// Function to Insert Node in a Binary Search Tree
struct Node* Insert(struct Node *root,char data) {
if(root == NULL) {
root = (struct Node*)malloc(sizeof(struct Node));
root->data = data;
root->left = root->right = NULL;
}
else if(data <= root->data)
root->left = Insert(root->left,data);
else
root->right = Insert(root->right,data);
return root;
}

int Search(struct Node *root, int key)
{
// Traverse untill root reaches to dead end
while (root != NULL)
{
// pass right subtree as new tree
if (key > root->data)
root = root->right;

// pass left subtree as new tree
else if (key < root->data)
root = root->left;
else
return 1;// if the key is found return 1
}
return 0;
}

int main() {
/*Code To Test the logic
Creating an example tree
5
/ \
3 10
/ \ \
1 4 11
*/
struct Node* root = NULL;
root = Insert(root,5);
root = Insert(root,10);
root = Insert(root,3);
root = Insert(root,4);
root = Insert(root,1); \
root = Insert(root,11);

//Print Nodes in Inorder
printf("Inorder[before deletion]: ");
Inorder(root);
printf("\n");

// Deleting node with value 5, change this value to test other cases
root = Delete(root,5);

//Print Nodes in Inorder
printf("Inorder[after deletion]: ");
Inorder(root);
printf("\n");

int key;
printf("Enter the node you want to search: ");
scanf("%d", &key);

if(Search(root, key))
printf("Element is in tree.\n");
else
printf("Element is not in tree.\n");
}
83 changes: 83 additions & 0 deletions Data-Structures-C/BST/02.BST_Traversal[pre,post,inorder].c
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
// Source - https://gist.github.com/mycodeschool
/* Binary Tree Traversal - Preorder, Inorder, Postorder */
#include<stdio.h>
#include<stdlib.h>

struct Node {
char data;
struct Node *left;
struct Node *right;
};

//Function to visit nodes in Preorder
void Preorder(struct Node *root) {
// base condition for recursion
// if tree/sub-tree is empty, return and exit
if(root == NULL) return;

printf("%c ",root->data); // Print data
Preorder(root->left); // Visit left subtree
Preorder(root->right); // Visit right subtree
}

//Function to visit nodes in Inorder
void Inorder(struct Node *root) {
if(root == NULL) return;

Inorder(root->left); //Visit left subtree
printf("%c ",root->data); //Print data
Inorder(root->right); // Visit right subtree
}

//Function to visit nodes in Postorder
void Postorder(struct Node *root) {
if(root == NULL) return;

Postorder(root->left); // Visit left subtree
Postorder(root->right); // Visit right subtree
printf("%c ",root->data); // Print data
}

// Function to Insert Node in a Binary Search Tree
struct Node* Insert(struct Node *root,char data) {
if(root == NULL) {
root = (struct Node*)malloc(sizeof(struct Node));
root->data = data;
root->left = root->right = NULL;
}
else if(data <= root->data)
root->left = Insert(root->left,data);
else
root->right = Insert(root->right,data);
return root;
}

int main() {
/*Code To Test the logic
Creating an example tree
M
/ \
B Q
/ \ \
A C Z
*/
struct Node* root = NULL;
root = Insert(root,'M');
root = Insert(root,'B');
root = Insert(root,'Q');
root = Insert(root,'Z');
root = Insert(root,'A');
root = Insert(root,'C');
//Print Nodes in Preorder.
printf("Preorder: ");
Preorder(root);
printf("\n");
//Print Nodes in Inorder
printf("Inorder: ");
Inorder(root);
printf("\n");
//Print Nodes in Postorder
printf("Postorder: ");
Postorder(root);
printf("\n");
}
Loading

0 comments on commit 3236193

Please sign in to comment.