A curated list of super-resolution resources and a benchmark for single image super-resolution algorithms.
See my implementated super-resolution algorithms:
Build a benckmark like SelfExSR_Code
- ScSR [Web]
- Image super-resolution as sparse representation of raw image patches (CVPR2008), Jianchao Yang et al.
- Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.
- Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.
- ANR [Web]
- Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.
- A+ [Web]
- A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.
- IA [Web]
- Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.
- SelfExSR [Web]
- Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.
- NBSRF [Web]
- Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.
- SRCNN [Web] [waifu2x by nagadomi]
- Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.
- Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.
- CSCN [Web]
- Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.
- Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.
- VDSR [Web] [Unofficial Implementation in Caffe]
- Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.
- DRCN [Web]
- Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.
- ESPCN [PDF]
- Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.
- Is the deconvolution layer the same as a convolutional layer? [PDF]
- FSRCNN [Web]
- Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.
- Perceptual Loss [PDF]
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.
- SRGAN [PDF]
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Christian Ledig et al.
- AffGAN [PDF]
- AMORTISED MAP INFERENCE FOR IMAGE SUPER-RESOLUTION, Casper Kaae Sønderby et al.
- EnhanceNet [PDF]
- EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis, Mehdi S. M. Sajjadi et al.
- neural-enchance [Github]
- VESPCN [[PDF]](Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation)
| Test Dataset | Image source | |---- | ---|----| | Set 5 | Bevilacqua et al. BMVC 2012 | | Set 14 | Zeyde et al. LNCS 2010 | | BSD 100 | Martin et al. ICCV 2001 | | Urban 100 | Huang et al. CVPR 2015 |
| Train Dataset | Image source | |---- | ---|----| | Yang 91 | Yang et al. CVPR 2008 | | BSD 200 | Martin et al. ICCV 2001 | | General 100 | Dong et al. ECCV 2016 | | ImageNet | Olga Russakovsky et al. IJCV 2015 | | COCO| Tsung-Yi Lin et al. ECCV 2014
Results from papers of VDSR, DRCN, CSCN and IA.
Note: IA use enchanced prediction trick to improve result.
Scale | Bicubic | A+ | SRCNN | SelfExSR | CSCN | VDSR | DRCN | IA |
---|---|---|---|---|---|---|---|---|
2x - PSNR/SSIM | 33.66/0.9929 | 36.54/0.9544 | 36.66/0.9542 | 36.49/0.9537 | 36.93/0.9552 | 37.53/0.9587 | 37.63/0.9588 | 37.39/ |
3x - PSNR/SSIM | 30.39/0.8682 | 32.59/0.9088 | 32.75/0.9090 | 32.58/0.9093 | 33.10/0.9144 | 33.66/0.9213 | 33.82/0.9226 | 33.46/ |
4x - PSNR/SSIM | 28.42/0.8104 | 30.28/0.8603 | 30.48/0.8628 | 30.31/0.8619 | 30.86/0.8732 | 31.35/0.8838 | 31.53/0.8854 | 31.10/ |
Scale | Bicubic | A+ | SRCNN | SelfExSR | CSCN | VDSR | DRCN | IA |
---|---|---|---|---|---|---|---|---|
2x - PSNR/SSIM | 30.24/0.8688 | 32.28/0.9056 | 32.42/0.9063 | 32.22/0.9034 | 32.56/0.9074 | 33.03/0.9124 | 33.04/0.9118 | 32.87/ |
3x - PSNR/SSIM | 27.55/0.7742 | 29.13/0.8188 | 29.28/0.8209 | 29.16/0.8196 | 29.41/0.8238 | 29.77/0.8314 | 29.76/0.8311 | 29.69/ |
4x - PSNR/SSIM | 26.00/0.7027 | 27.32/0.7491 | 27.49/0.7503 | 27.40/0.7518 | 27.64/0.7587 | 28.01/0.7674 | 28.02/0.7670 | 27.88/ |
Scale | Bicubic | A+ | SRCNN | SelfExSR | CSCN | VDSR | DRCN | IA |
---|---|---|---|---|---|---|---|---|
2x - PSNR/SSIM | 29.56/0.8431 | 31.21/0.8863 | 31.36/0.8879 | 31.18/0.8855 | 31.40/0.8884 | 31.90/0.8960 | 31.85/0.8942 | 31.79/ |
3x - PSNR/SSIM | 27.21/0.7385 | 28.29/0.7835 | 28.41/0.7863 | 28.29/0.7840 | 28.50/0.7885 | 28.82/0.7976 | 28.80/0.7963 | 28.76/ |
4x - PSNR/SSIM | 25.96/0.6675 | 26.82/0.7087 | 26.90/0.7101 | 26.84/0.7106 | 27.03/0.7161 | 27.29/0.7251 | 27.23/0.7233 | 27.25/ |
| Scale | Bicubic | A+ | SRCNN | SelfExSR | SCN | VDSR | DRCN | PSyCo (32)|PSyCo (1024) | FSRCNN-S | FSRCNN | RAISR |
|:---------:|:-------:|:--------:|:------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| 2x | 33.66/0.002 | 36.54/0.684 | 36.66/4.722 | 36.49/42.521 | 36.93 | 37.53/0.9587/0.13 | 37.63/0.9588/1.54 | 36.57/0.038 | 36.88/0.185 | 36.58/0.024 | 37.00/0.068 |36.061/0.951/0.018 |
| 3x | 30.39/0.002 | 32.59/0.401 | 32.75/5.226 | 32.58/31.008 | 33.10 | 33.66/0.9213/0.13 | 33.82/0.9226/1.55 | 32.63/0.049 | 32.93/0.456 | 32.61/0.010 | 33.16/0.027 |32.172/0.900/0.015 |
| 4x | 28.42/0.002 | 30.28/0.226 | 30.48/9.962 | 30.31/26.728 | 30.86 | 31.35/0.8838/0.12 | 31.53/0.8854/1.54 | 30.32/0.055 | 30.62/0.210 | 30.11/0.0052 | 30.71/0.015 |29.834/0.848/0.017 |
[ RAISR ] RAISR: Rapid and Accurate Image Super Resolution
[ PSyCo ] PSyCo: Manifold Span Reduction for Super Resolution
[ FSRCNN ] Accelerating the Super-Resolution Convolutional Neural Network
[ DRCN ] Deeply-Recursive Convolutional Network for Image Super-Resolution
[ AI ] Seven ways to improve example-based single image super resolution
[ VDSR ] Accurate Image Super-Resolution Using Very Deep Convolutional Networks
[ SCN ] Deep Networks for Image Super-Resolution with Sparse Prior
[ SRCNN ] Image Super-Resolution Using Deep Convolutional Networks
[ ANR ] Anchored Neighborhood Regression for Fast Example-Based Super-Resolution
[ A+ ] A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution