Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dataframe includes non-dimension columns. #50

Merged
merged 3 commits into from
Mar 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions xarray_sql/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
Row = t.List[t.Any]


# deprecated
def get_columns(ds: xr.Dataset) -> t.List[str]:
return list(ds.dims.keys()) + list(ds.data_vars.keys())

Expand Down
2 changes: 1 addition & 1 deletion xarray_sql/df.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def pivot(b: Block) -> pd.DataFrame:
f'{"_".join(list(ds.data_vars.keys()))}'
)

columns = core.get_columns(ds)
columns = pivot(blocks[0]).columns

# TODO(#18): Is it possible to pass the length (known now) here?
meta = {c: ds[c].dtype for c in columns}
Expand Down
37 changes: 37 additions & 0 deletions xarray_sql/df_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,37 @@

import dask.dataframe as dd
import numpy as np
import pandas as pd
import xarray as xr

from .df import explode, read_xarray, block_slices


def rand_wx(start: str, end: str) -> xr.Dataset:
np.random.seed(42)
lat = np.linspace(-90, 90, num=720)
lon = np.linspace(-180, 180, num=1440)
time = pd.date_range(start, end, freq='H')
level = np.array([1000, 500], dtype=np.int32)
reference_time = pd.Timestamp(start)
temperature = 15 + 8 * np.random.randn(720, 1440, len(time), len(level))
precipitation = 10 * np.random.rand(720, 1440, len(time), len(level))
return xr.Dataset(
data_vars=dict(
temperature=(['lat', 'lon', 'time', 'level'], temperature),
precipitation=(['lat', 'lon', 'time', 'level'], precipitation),
),
coords=dict(
lat=lat,
lon=lon,
time=time,
level=level,
reference_time=reference_time,
),
attrs=dict(description='Random weather.'),
)


class DaskTestCase(unittest.TestCase):

def setUp(self) -> None:
Expand All @@ -18,6 +44,7 @@ def setUp(self) -> None:
self.air_small = self.air.isel(
time=slice(0, 12), lat=slice(0, 11), lon=slice(0, 10)
).chunk(self.chunks)
self.randwx = rand_wx('1995-01-13T00', '1995-01-13T01')


class ExplodeTest(DaskTestCase):
Expand Down Expand Up @@ -84,6 +111,16 @@ def test_chunk_perf(self):
self.assertIsNotNone(df)
self.assertEqual(len(df), np.prod(list(self.air.dims.values())))

def test_column_metadata_preserved(self):
try:
_ = read_xarray(self.randwx, chunks=dict(time=24)).compute()
except ValueError as e:
if (
'The columns in the computed data do not match the columns in the'
' provided metadata' in str(e)
):
self.fail('Column metadata is incorrect.')


if __name__ == '__main__':
unittest.main()
Loading