Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Chapter 6.A rules to "all the rules we know" #52

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
148 changes: 148 additions & 0 deletions reference/all-the-rules-we-know.tex
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@
\newcommand{\imag}{\mathrm{i}}
\newcommand{\card}[1]{\##1}
\newcommand{\transpose}[1]{{#1}^{\rm t}}
\newcommand{\inner}[2]{\left\langle #1, #2 \right\rangle}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\def\R{\mathbb{R}}
\def\C{\mathbb{C}}
\def\F{\mathbb{F}}
Expand Down Expand Up @@ -1811,4 +1813,150 @@ \section*{Chapter 5.E}
\end{enumerate}
\end{result}

\clearpage

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Chapter 6.A}

\begin{definition}{6.1}[dot product]
For $x, y \in \R^n$, the \defn{dot product} of $x$ and $y$, denoted $x \cdot y$, is defined by
$$
x \cdot y = x_1 y_1 + \cdots + x_n y_n,
$$
where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.
\end{definition}

\begin{notation}{6.1\textonehalf}[complex nonnegative]
For $\lambda \in \C$, the notation $\lambda \ge 0$ means $\lambda$ is real and nonnegative.
\end{notation}

\begin{definition}{6.2}[inner product]
An \defn{inner product} on $V$ is a function that takes each ordered pair $(u, v)$ of elements of $V$ to a number $\inner{u}{v} \in \F$ and has the following properties.

\defn{positivity}
\begin{forceindent}
$\inner{v}{v} \ge 0$ for all $v \in V$.
\end{forceindent}

\defn{definiteness}
\begin{forceindent}
$\inner{v}{v} = 0$ if and only if $v = 0$.
\end{forceindent}

\defn{additivity in first slot}
\begin{forceindent}
$\inner{u + v}{w} = \inner{u}{w} + \inner{v}{w}$ for all $u, v, w \in V$.
\end{forceindent}

\defn{homogeneity in first slot}
\begin{forceindent}
$\inner{\lambda u}{v} = \lambda \inner{u}{v}$ for all $\lambda \in \F$ and all $u, v \in V$.
\end{forceindent}

\defn{conjugate symmetry}
\begin{forceindent}
$\inner{u}{v} = \overline{\inner{v}{u}}$ for all $u, v \in V$.
\end{forceindent}
\end{definition}

\begin{definition}{6.4}[inner product space]
An \defn{inner product space} is a vector space $V$ along with an inner product $V$.
\end{definition}

\begin{notation}{6.5}[$V, W$]
For chapters 6 and 7, $V$ and $W$ denote inner product spaces over $F$.
\end{notation}

\begin{definition}{6.7}[norm, $\norm{v}$]
For $v \in V$, the \defn{norm}, denoted by $\norm{v}$, is defined by
$$
\norm{v} = \sqrt{\inner{v}{v}} .
$$
\end{definition}

\begin{definition}{6.10}[orthogonal]
Two vectors $u, v \in V$ are called \defn{orthogonal} if $\inner{u}{v} = 0$.
\end{definition}

\newpage

\begin{result}{6.6}[basic properties of an inner product] \enumfix
\begin{enumerate}
\item[(a)] For each fixed $v \in V$, the function that takes $u \in V$ to $\inner{u}{v}$ is a linear map from $V$ to $\F$.
\item[(b)] $\inner{0}{v} = 0$ for every $v \in V$.
\item[(c)] $\inner{v}{0} = 0$ for every $v \in V$.
\item[(d)] $\inner{u}{v + w} = \inner{u}{v} + \inner{u}{w}$ for all $u, v, w \in V$.
\item[(e)] $\inner{u}{\lambda v} = \bar\lambda \inner{u}{v}$ for all $\lambda \in \F$ and all $u, v \in V$.
\end{enumerate}
\end{result}

\begin{result}{6.9}[basic properties of the norm]
Suppose $v \in V$.
\begin{enumerate}
\item[(a)] $\norm{v} = 0$ if and only if $v = 0$.
\item[(b)] $\norm{\lambda v} = |\lambda| \norm{v}$ for all $\lambda \in \F$.
\end{enumerate}
\end{result}

% Exercise 15
\begin{result}{Ex. 6A, 15}[angle between vectors in $\R^2$]
If $u, v \in \R^2$ are non-zero then
$$
\inner{u}{v} = \norm{u} \norm{v} \cos \theta,
$$
where $\theta$ is the angle between $u$ and $v$.
\end{result}

\begin{result}{6.11}[orthogonality and 0] \enumfix
\begin{enumerate}
\item[(a)] 0 is orthogonal to every vector in $V$.
\item[(b)] 0 is the only vector in $V$ that is orthogonal to itself.
\end{enumerate}
\end{result}

\begin{theorem}{6.12}[Pythagorean theorem]
Suppose $u, v \in V$. If $u$ and $v$ are orthogonal, then
$$
\norm{u + v}^2 = \norm{u}^2 + \norm{v}^2 .
$$
\end{theorem}

\begin{result}{6.13}[an orthogonal decomposition]
Suppose $u, v \in V$, with $v \not= 0$. Set $c = \frac{\inner{u}{v}}{\norm{v}^2}$ and $w = u - \frac{\inner{u}{v}}{\norm{v}^2} v$. Then
$$
u = cv + w \quad \text{and} \quad \inner{w}{v} = 0.
$$
\end{result}

\begin{theorem}{6.14}[Cauchy-Schwarz inequality]
Suppose $u, v \in V$. Then
$$
|\inner{u}{v}| \le \norm{u}\norm{v} .
$$
This inequality is an equality if and only if one of $u, v$ is a scalar multiple of the other.
\end{theorem}

\begin{theorem}{6.17}[triangle inequality]
Suppose $u, v \in V$. Then
$$
\norm{u + v} \le \norm{u} + \norm{v} .
$$
This inequality is an equality if and only if one of $u, v$ is a nonnegative real multiple of the other.
\end{theorem}

% Exercise 20
\begin{result}{Ex. 6A, 20}[reverse triangle inequality]
If $u, v \in V$, then
$$
\left| \vphantom{\sum} \norm{u} - \norm{v} \vphantom{\sum} \right| \le \norm{u - v} .
$$
\end{result}

\begin{result}{6.21}[parallelogram inequality]
Suppose $u, v \in V$. Then
$$
\norm{u + v}^2 + \norm{u - v}^2 = 2(\norm{u}^2 + \norm{v}^2 ) .
$$
\end{result}

\end{document}