This repository is the official implementation of "SCALOR: Generative World Models with Scalable Object Representations" by Jindong Jiang*, Sepehr Janghorbani*, Gerard de Melo, and Sungjin Ahn; accepted at the International Conference on Learning Representations (ICLR) 2020. Project Website
To install requirements:
conda env create -f environment.yml
To activate:
conda activate scalor_env
The "Grand Central Station" dataset can be downloaded here. After downloading the file, extract the dataset using this command:
tar -xf grandcentralframes.tar.gz -C /path/to/dataset/
To train SCALOR with default settings, run this command:
python train.py --data-dir /path/to/dataset/
@inproceedings{JiangJanghorbaniDeMeloAhn2020SCALOR,
title={SCALOR: Generative World Models with Scalable Object Representations},
author={Jindong Jiang and Sepehr Janghorbani and Gerard {de Melo} and Sungjin Ahn},
booktitle={Proceedings of ICLR 2020},
year={2020},
publisher = {OpenReview.net},
location = {Addis Ababa, Ethiopia},
url = {https://openreview.net/pdf?id=SJxrKgStDH},
}