Skip to content

(GuidedRec) A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning, SIGIR 2021.

Notifications You must be signed in to change notification settings

ahmedrashed-ml/GuidedRec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

GuidedRec

This is our implementation for the SIGIR 2021 paper:

Rashed, Ahmed, Josif Grabocka, and Lars Schmidt-Thieme. "A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning (SIGIR). 2021.

Enviroment for GuidedRec, Surrogate Loss and Logloss

* pandas==1.0.3
* tensorflow==1.14.0
* matplotlib==3.1.3
* numpy==1.18.1
* six==1.14.0
* scikit_learn==0.23.1

Commands

GraphRec Model

with logloss
  • python GraphRec.py 0 45
with GuidedRec
  • python GraphRec.py 1 45

surrogate Only

  • python GraphRecSurrogate.py 1 45

NueMF Model

with logloss
  • python NueMF.py 0 45

Enviroment for TFRanking Losses

* numpy==1.18.1
* six==1.14.0
* matplotlib==3.1.3
* tensorflow==2.3.0
* pandas==1.0.3
* scikit_learn==0.23.1
* tensorflow_addons==0.10.0
* tensorflow_ranking==0.3.0

Commands

GraphRec Model

with gumbel_approx_ndcg_loss
  • python GraphRecTFRank.py 0 45 "'gumbel_approx_ndcg_loss'"
with approx_ndcg_loss
  • python GraphRecTFRank.py 0 45 "'approx_ndcg_loss'"
with list_mle_loss
  • python GraphRecTFRank.py 0 45 "'list_mle_loss'"
with softmax_loss
  • python GraphRecTFRank.py 0 45 "'softmax_loss'"
with pairwise_logistic_loss
  • python GraphRecTFRank.py 0 45 "'pairwise_logistic_loss'"
with neural_sort_cross_entropy_loss
  • python GraphRecTFRank.py 0 45 "'neural_sort_cross_entropy_loss'"

Note: All scripts require a gpu. Please change the device <DEVICE = "/gpu:0"> to cpu if you have no gpu

About

(GuidedRec) A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning, SIGIR 2021.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages