This is our implementation for the SIGIR 2021 paper:
Rashed, Ahmed, Josif Grabocka, and Lars Schmidt-Thieme. "A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning (SIGIR). 2021.
* pandas==1.0.3
* tensorflow==1.14.0
* matplotlib==3.1.3
* numpy==1.18.1
* six==1.14.0
* scikit_learn==0.23.1
- python GraphRec.py 0 45
- python GraphRec.py 1 45
- python GraphRecSurrogate.py 1 45
- python NueMF.py 0 45
* numpy==1.18.1
* six==1.14.0
* matplotlib==3.1.3
* tensorflow==2.3.0
* pandas==1.0.3
* scikit_learn==0.23.1
* tensorflow_addons==0.10.0
* tensorflow_ranking==0.3.0
- python GraphRecTFRank.py 0 45 "'gumbel_approx_ndcg_loss'"
- python GraphRecTFRank.py 0 45 "'approx_ndcg_loss'"
- python GraphRecTFRank.py 0 45 "'list_mle_loss'"
- python GraphRecTFRank.py 0 45 "'softmax_loss'"
- python GraphRecTFRank.py 0 45 "'pairwise_logistic_loss'"
- python GraphRecTFRank.py 0 45 "'neural_sort_cross_entropy_loss'"