Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1. Raise an exception if the sum of fitness values is zero while either roulette wheel or stochastic universal parent selection is used. #129 2. Initialize the value of the `run_completed` property to `False`. #122 3. The values of these properties are no longer reset with each call to the `run()` method `self.best_solutions, self.best_solutions_fitness, self.solutions, self.solutions_fitness`: #123. Now, the user can have the flexibility of calling the `run()` method more than once while extending the data collected after each generation. Another advantage happens when the instance is loaded and the `run()` method is called, as the old fitness value are shown on the graph alongside with the new fitness values. Read more in this section: [Continue without Loosing Progress](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#continue-without-loosing-progress) 4. Thanks [Prof. Fernando Jiménez Barrionuevo](http://webs.um.es/fernan) (Dept. of Information and Communications Engineering, University of Murcia, Murcia, Spain) for editing this [comment](https://github.com/ahmedfgad/GeneticAlgorithmPython/blob/5315bbec02777df96ce1ec665c94dece81c440f4/pygad.py#L73) in the code. 5315bbe 5. A bug fixed when `crossover_type=None`. 6. Support of elitism selection through a new parameter named `keep_elitism`. It defaults to 1 which means for each generation keep only the best solution in the next generation. If assigned 0, then it has no effect. Read more in this section: [Elitism Selection](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#elitism-selection). #74 7. A new instance attribute named `last_generation_elitism` added to hold the elitism in the last generation. 8. A new parameter called `random_seed` added to accept a seed for the random function generators. Credit to this issue #70 and [Prof. Fernando Jiménez Barrionuevo](http://webs.um.es/fernan). Read more in this section: [Random Seed](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#random-seed). 9. Editing the `pygad.TorchGA` module to make sure the tensor data is moved from GPU to CPU. Thanks to Rasmus Johansson for opening this pull request: ahmedfgad/TorchGA#2
- Loading branch information