Skip to content

Commit

Permalink
Don't throw error if ForwardContext is not available (#730)
Browse files Browse the repository at this point in the history
Fixes in this PR:
- Fix 'NoneType' error if context not available
- Fix Llama grad checkpointing training.
- Add quantized training test.

Still existing limitation:
- ForwardContext does not work with gradient checkpointing, ie methods
such as reft or prefix tuning don't work with gradient checkpointing
currently.
  • Loading branch information
calpt authored Aug 10, 2024
1 parent cd9e76c commit 251a853
Show file tree
Hide file tree
Showing 4 changed files with 100 additions and 6 deletions.
11 changes: 7 additions & 4 deletions src/adapters/methods/bottleneck.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,13 +204,15 @@ def mean(self, states: List[BottleneckState], weights: torch.Tensor) -> Bottlene
def compose_single(self, adapter_setup: str, state: BottleneckState, lvl: int = 0) -> BottleneckState:
adapter_layer = self.adapters[adapter_setup]
context = ForwardContext.get_context()
output_gating = context.output_adapter_gating_scores if context is not None else False
layer_output = adapter_layer(
state.hidden_states,
residual_input=state.adapter_residual,
output_gating=context.output_adapter_gating_scores,
output_gating=output_gating,
)
hidden_states, up = layer_output[0], layer_output[2]
self._store_gating_score(adapter_setup, layer_output[-1])
if output_gating:
self._store_gating_score(adapter_setup, layer_output[-1])

return state._replace(hidden_states=hidden_states, bottleneck_up=up, last=adapter_setup)

Expand Down Expand Up @@ -246,14 +248,15 @@ def compose_fuse(self, adapter_setup: Fuse, state: BottleneckState, lvl: int = 0
up_list = torch.stack([state.bottleneck_up for state in children_states])
up_list = up_list.permute(1, 2, 0, 3)

output_fusion_attns = context.output_adapter_fusion_attentions if context is not None else False
fusion_output = self.adapter_fusion_layer[adapter_setup.name](
query,
up_list,
up_list,
state.adapter_residual,
output_attentions=context.output_adapter_fusion_attentions,
output_attentions=output_fusion_attns,
)
if context.output_adapter_fusion_attentions:
if output_fusion_attns:
hidden_states = fusion_output[0]
self._store_fusion_attentions(adapter_setup.name, fusion_output[-1])
else:
Expand Down
4 changes: 3 additions & 1 deletion src/adapters/models/llama/modeling_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -398,10 +398,11 @@ def forward(
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Expand Down Expand Up @@ -437,6 +438,7 @@ def forward(
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.attention_adapters(hidden_states, residual, None)
Expand Down
5 changes: 5 additions & 0 deletions src/adapters/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,9 @@ def __init__(
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = None,
):
if model is not None:
model_quantized = getattr(model, "is_quantized", False)
model.is_quantized = False
super().__init__(
model,
args,
Expand All @@ -55,6 +58,8 @@ def __init__(
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
if model is not None:
model.is_quantized = model_quantized

if adapter_names is not None:
self.model.set_active_adapters(adapter_names)
Expand Down
86 changes: 85 additions & 1 deletion tests/test_adapter_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,22 +3,27 @@
from tempfile import TemporaryDirectory

import torch
from datasets import Dataset

import adapters
from adapters import AutoAdapterModel
from adapters.composition import Fuse, Stack
from adapters.trainer import AdapterTrainer, logger
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BertConfig,
BertForSequenceClassification,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
GlueDataset,
GlueDataTrainingArguments,
Trainer,
TrainingArguments,
)
from transformers.testing_utils import require_ray, slow
from transformers.testing_utils import require_bitsandbytes, require_ray, slow, torch_device


class TestAdapterTrainer(unittest.TestCase):
Expand Down Expand Up @@ -536,6 +541,85 @@ def model_init(trail=None):

trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, backend="ray", n_trials=2)

@parameterized.expand(["lora", "seq_bn"])
@require_bitsandbytes
def test_quantized_training(self, config):
model_name = "HuggingFaceM4/tiny-random-LlamaForCausalLM"

tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

dataset = Dataset.from_dict({"text": ["Hello, I'm a single sentence!", "This is another sentence."]})

def tokenize(element):
return tokenizer(
element["text"],
truncation=True,
max_length=512, # can set to longer values such as 2048
add_special_tokens=False,
)

dataset_tokenized = dataset.map(tokenize, batched=True, remove_columns=["text"])

model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
),
torch_dtype=torch.bfloat16,
)
model.config.use_cache = False

adapters.init(model)
model.add_adapter("task")
model.train_adapter("task")

model.adapter_to("task", device=torch_device)

for param in model.parameters():
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
param.data = param.data.to(torch.float32)

model.gradient_checkpointing_enable()
model.enable_input_require_grads()

class CastOutputToFloat(torch.nn.Sequential):
def forward(self, x):
return super().forward(x).to(torch.float32)

model.lm_head = CastOutputToFloat(model.lm_head)

self.assertEqual(Stack("task"), model.active_adapters)
with TemporaryDirectory() as tempdir:
training_args = TrainingArguments(
output_dir=tempdir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
evaluation_strategy="steps",
logging_steps=10,
max_steps=5,
lr_scheduler_type="constant",
optim="paged_adamw_32bit",
learning_rate=0.0002,
group_by_length=True,
bf16=True,
max_grad_norm=0.3,
)
trainer = AdapterTrainer(
model=model,
tokenizer=tokenizer,
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
train_dataset=dataset_tokenized,
args=training_args,
)

trainer.train()


if __name__ == "__main__":
unittest.main()

0 comments on commit 251a853

Please sign in to comment.