Skip to content

Commit

Permalink
Merge pull request #146 from abhisrkckl/pulsar
Browse files Browse the repository at this point in the history
Pulsar type
  • Loading branch information
abhisrkckl authored Dec 13, 2024
2 parents 3b033e4 + f14a863 commit c40f9d3
Show file tree
Hide file tree
Showing 12 changed files with 182 additions and 71 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Unreleased
## Added
- `time_residuals`, `scaled_toa_uncertainties`, and `model_dm`, `from_pint` methods in `SPNTA`
- `Pulsar` class
## Changed
## Fixed
## Removed
Expand Down
9 changes: 8 additions & 1 deletion docs/src/pyvela.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,14 @@ Here, `spnta.model` is a `Vela.TimingModel` object and `spnta.toas` is a `Vector
function reads the `par` and `tim` files using the
[`pint.models.get_model_and_toas`](https://nanograv-pint.readthedocs.io/en/latest/_autosummary/pint.models.model_builder.get_model_and_toas.html)
function under the hood and converts the resulting `pint.models.TimingModel` and `pint.toa.TOAs` objects. Note that this conversion does
not conserve all the information, and the reverse is not possible.
not conserve all the information, and the reverse is not possible.

The `SPNTA` class internally uses the `Pulsar` type to store the timing model and the TOAs together.
Currently it is assumed that all the TOAs are of the same paradigm (narrowband or wideband). Inhomogeneous
datasets are not supported.
```@docs
Pulsar
```

`cheat_prior_scale` defines the scale factor by which the frequentist uncertainties are multiplied to
obtain the "cheat" prior widths. The `custom_priors` argument contains the user-defined prior distributions,
Expand Down
2 changes: 1 addition & 1 deletion pyvela/examples/run_example_emcee.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@
nwalkers,
spnta.ndim,
spnta.lnpost_vectorized,
moves=[emcee.moves.StretchMove(), emcee.moves.DESnookerMove()],
# moves=[emcee.moves.StretchMove(), emcee.moves.DESnookerMove()],
vectorize=True,
)
sampler.run_mcmc(p0, 6000, progress=True, progress_kwargs={"mininterval": 1})
Expand Down
6 changes: 3 additions & 3 deletions pyvela/pyvela/priors.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,15 +25,15 @@
"DMEFAC": jl.LogNormal(0.0, 0.25),
"PLREDCOS_": jl.Normal(),
"PLREDSIN_": jl.Normal(),
"TNREDAMP": jl.Uniform(-16.0, -9.0),
"TNREDAMP": jl.Uniform(-18.0, -9.0),
"TNREDGAM": jl.Uniform(0.0, 7.0),
"PLDMCOS_": jl.Normal(),
"PLDMSIN_": jl.Normal(),
"TNDMAMP": jl.Uniform(-16.0, -9.0),
"TNDMAMP": jl.Uniform(-18.0, -9.0),
"TNDMGAM": jl.Uniform(0.0, 7.0),
"PLCHROMCOS_": jl.Normal(),
"PLCHROMSIN_": jl.Normal(),
"TNCHROMAMP": jl.Uniform(-16.0, -9.0),
"TNCHROMAMP": jl.Uniform(-18.0, -9.0),
"TNCHROMGAM": jl.Uniform(0.0, 7.0),
}

Expand Down
110 changes: 76 additions & 34 deletions pyvela/pyvela/spnta.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,23 +126,7 @@ def __init__(
custom_priors=custom_priors,
)

self._setup(model, toas)

def _setup(self, model, toas):
self.model = model
self.toas = toas

self.lnlike = vl.get_lnlike_func(self.model, self.toas)
self.lnprior = vl.get_lnprior_func(self.model)
self.prior_transform = vl.get_prior_transform_func(self.model)
self.lnpost = vl.get_lnpost_func(self.model, self.toas, False)
self.lnpost_vectorized = vl.get_lnpost_func(self.model, self.toas, True)

self.param_names = list(vl.get_free_param_names(self.model))
self.param_labels = list(vl.get_free_param_labels(self.model))
self.scale_factors = np.array(vl.get_scale_factors(self.model))
self.maxlike_params = np.array(vl.read_param_values_to_vector(self.model))
self.ndim = len(self.param_names)
self.pulsar = vl.Pulsar(model, toas)

self._check()

Expand All @@ -156,46 +140,99 @@ def _check(self):
assert all(np.isfinite([lnpr, lnl, lnp]))
assert np.isclose(lnp, lnpv)

def lnlike(self, params):
return vl.calc_lnlike(self.pulsar, params)

def lnprior(self, params):
return vl.calc_lnprior(self.pulsar, params)

def prior_transform(self, cube):
return vl.prior_transform(self.pulsar, cube)

def lnpost(self, params):
return vl.calc_lnpost(self.pulsar, params)

def lnpost_vectorized(self, paramss):
return vl.calc_lnpost_vectorized(self.pulsar, paramss)

@property
def model(self):
return self.pulsar.model

@property
def toas(self):
return self.pulsar.toas

@property
def param_names(self):
return list(vl.get_free_param_names(self.pulsar.model))

@property
def param_labels(self):
return list(vl.get_free_param_labels(self.pulsar.model))

@property
def scale_factors(self):
return np.array(vl.get_scale_factors(self.pulsar.model))

@property
def maxlike_params(self):
return np.array(vl.read_param_values_to_vector(self.pulsar.model))

@property
def ndim(self):
return len(self.param_names)

def rescale_samples(self, samples: np.ndarray) -> np.ndarray:
"""Rescale the samples from Vela's internal units to common units"""
return samples / self.scale_factors

def save_jlso(self, filename: str) -> None:
"""Write the model and TOAs as a JLSO file"""
vl.save_pulsar_data(filename, self.model, self.toas)
vl.save_pulsar_data(filename, self.pulsar.model, self.pulsar.toas)

def is_wideband(self) -> bool:
"""Whether the TOAs are wideband."""
return jl.isa(self.toas[0], vl.WidebandTOA)
return jl.isa(self.pulsar.toas[0], vl.WidebandTOA)

def get_mjds(self) -> np.ndarray:
"""Get the MJDs of each TOA."""
if self.is_wideband():
return np.array(
[jl.Float64(vl.value(wtoa.toa.value)) / day_to_s for wtoa in self.toas]
[
jl.Float64(vl.value(wtoa.toa.value)) / day_to_s
for wtoa in self.pulsar.toas
]
)
else:
return np.array(
[jl.Float64(vl.value(toa.value)) / day_to_s for toa in self.toas]
[jl.Float64(vl.value(toa.value)) / day_to_s for toa in self.pulsar.toas]
)

def time_residuals(self, params: np.ndarray) -> np.ndarray:
"""Get the timing residuals (s) for a given set of parameters."""
params = vl.read_params(self.model, params)
params = vl.read_params(self.pulsar.model, params)
return np.array(
list(map(vl.value, vl.form_residuals(self.model, self.toas, params)))
list(
map(
vl.value,
vl.form_residuals(self.pulsar.model, self.pulsar.toas, params),
)
)
if not self.is_wideband()
else [
vl.value(wr[0])
for wr in vl.form_residuals(self.model, self.toas, params)
for wr in vl.form_residuals(self.pulsar.model, self.pulsar.toas, params)
]
)

def scaled_toa_unceritainties(self, params: np.ndarray) -> np.ndarray:
"""Get the scaled TOA uncertainties (s) for a given set of parameters."""
params = vl.read_params(self.model, params)
params = vl.read_params(self.pulsar.model, params)

ctoas = [vl.correct_toa(self.model, tvi, params) for tvi in self.toas]
ctoas = [
vl.correct_toa(self.pulsar.model, tvi, params) for tvi in self.pulsar.toas
]

return np.sqrt(
[
Expand All @@ -204,26 +241,29 @@ def scaled_toa_unceritainties(self, params: np.ndarray) -> np.ndarray:
if not self.is_wideband()
else vl.scaled_toa_error_sqr(tvi.toa, ctoa.toa_correction)
)
for (tvi, ctoa) in zip(self.toas, ctoas)
for (tvi, ctoa) in zip(self.pulsar.toas, ctoas)
]
)

def model_dm(self, params: np.ndarray) -> np.ndarray:
"""Compute the model DM (dmu) for a given set of parameters."""
params = vl.read_params(self.model, params)
params = vl.read_params(self.pulsar.model, params)

if not self.is_wideband():
dms = np.zeros(len(self.toas))
for ii, toa in enumerate(self.toas):
dms = np.zeros(len(self.pulsar.toas))
for ii, toa in enumerate(self.pulsar.toas):
ctoa = vl.TOACorrection()
for component in self.model.components:
for component in self.pulsar.model.components:
if vl.isa(component, vl.DispersionComponent):
dms[ii] += vl.value(
vl.dispersion_slope(component, toa, ctoa, params)
)
ctoa = vl.correct_toa(component, toa, ctoa, params)
else:
ctoas = [vl.correct_toa(self.model, tvi, params) for tvi in self.toas]
ctoas = [
vl.correct_toa(self.pulsar.model, tvi, params)
for tvi in self.pulsar.toas
]
dms = np.array([vl.value(ctoa.dm_correction.model_dm) for ctoa in ctoas])

dmu_conversion_factor = 2.41e-16 # Hz / (DMconst * dmu)
Expand All @@ -236,7 +276,8 @@ def load_jlso(cls, filename: str):
spnta = cls.__new__(cls)
model, toas = vl.load_pulsar_data(filename)
spnta.jlsofile = filename
spnta._setup(model, toas)
spnta.pulsar = vl.Pulsar(model, toas)
spnta._check()
return spnta

@classmethod
Expand Down Expand Up @@ -269,7 +310,8 @@ def from_pint(
custom_priors=custom_priors,
)

spnta._setup(model_v, toas_v)
spnta.pulsar = vl.Pulsar(model_v, toas_v)
spnta._check()

return spnta

Expand Down
5 changes: 5 additions & 0 deletions pyvela/tests/test_data_files.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,11 @@ def test_data(model_and_toas):

assert all(np.isfinite(spnta.model_dm(spnta.maxlike_params)))

assert (
all([len(label) > 0 for label in spnta.param_labels])
and len(spnta.param_labels) == spnta.ndim
)


def test_chi2(model_and_toas):
spnta: SPNTA
Expand Down
1 change: 1 addition & 0 deletions src/Vela.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@ include("likelihood/wls_likelihood.jl")
include("likelihood/ecorr_likelihood.jl")
include("likelihood/wideband_wls_likelihood.jl")
include("likelihood/posterior.jl")
include("pulsar/pulsar.jl")
include("readwrite/readwrite.jl")

end
53 changes: 29 additions & 24 deletions src/likelihood/posterior.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,29 @@
export get_lnpost_func
export calc_lnpost, calc_lnpost_serial, calc_lnpost_vectorized, get_lnpost_func


function calc_lnpost(model::TimingModel, toas::Vector{T}, params) where {T<:TOABase}
lnpr = calc_lnprior(model, params)
return isnan(lnpr) ? lnpr : lnpr + calc_lnlike(model, toas, params)
end

function calc_lnpost_serial(model::TimingModel, toas::Vector{T}, params) where {T<:TOABase}
lnpr = calc_lnprior(model, params)
return isnan(lnpr) ? lnpr : lnpr + calc_lnlike_serial(model, toas, params)
end

function calc_lnpost_vectorized(
model::TimingModel,
toas::Vector{T},
paramss,
) where {T<:TOABase}
nparamss = size(paramss)[1]
result = Vector{Float64}(undef, nparamss)
@threads :static for ii = 1:nparamss
result[ii] = calc_lnpost_serial(model, toas, paramss[ii, :])
end
return result
end

"""
get_lnpost_func(::TimingModel, toas::Vector{T}, vectorize::Bool = false) where {T<:TOABase}
Expand All @@ -13,29 +36,11 @@ function get_lnpost_func(
toas::Vector{T},
vectorize::Bool = false,
) where {T<:TOABase}
lnprior_func = get_lnprior_func(model)
lnlike_func =
vectorize ? get_lnlike_serial_func(model, toas) : get_lnlike_func(model, toas)
nfree = model.param_handler._nfree

function lnpost(params)
lnpr = lnprior_func(params)
return isfinite(lnpr) ? lnpr + lnlike_func(params) : -Inf
end

if vectorize
function _lnpost_vector(paramss)
@assert (length(size(paramss)) == 2 && size(paramss)[2] == nfree) "Please pass a 2D array to this function for vectorized evaluation, where each row has `Nfree` elements."
nparamss = size(paramss)[1]
result = Vector{Float64}(undef, nparamss)
@threads :static for ii = 1:nparamss
result[ii] = lnpost(paramss[ii, :])
end
return result
end

return _lnpost_vector
return if vectorize
paramss -> calc_lnpost_vectorized(model, toas, paramss)
elseif nthreads() == 1
params -> calc_lnpost_serial(model, toas, params)
else
return lnpost
params -> calc_lnpost(model, toas, params)
end
end
15 changes: 11 additions & 4 deletions src/prior/prior.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,10 @@
export Prior, lnprior, prior_transform, get_lnprior_func, get_prior_transform_func, distr
export Prior,
lnprior,
calc_lnprior,
prior_transform,
get_lnprior_func,
get_prior_transform_func,
distr

"""Abstract base class of all priors."""
abstract type Prior end
Expand All @@ -8,15 +14,16 @@ lnprior(prior::Prior, params::NamedTuple) =
logpdf(distr(prior, params), param_value(prior, params))
lnprior(priors, params::NamedTuple) = sum(prior -> lnprior(prior, params), priors)
lnprior(priors, params) = mapreduce(lnprior, +, priors, params)
lnprior(model::TimingModel, params::NamedTuple) = lnprior(model.priors, params)
lnprior(model::TimingModel, params) = lnprior(model.priors, params)

calc_lnprior(model::TimingModel, params::NamedTuple) = lnprior(model.priors, params)
calc_lnprior(model::TimingModel, params) = lnprior(model.priors, params)

"""
get_lnprior_func(::TimingModel)::Function
Returns a callable that evaluates the log-prior given a collection of parameter values.
"""
get_lnprior_func(model::TimingModel) = params -> lnprior(model, params)
get_lnprior_func(model::TimingModel) = params -> calc_lnprior(model, params)

"""Evaluate the prior transform function."""
prior_transform(priors, cube) = map(prior_transform, priors, cube)
Expand Down
23 changes: 23 additions & 0 deletions src/pulsar/pulsar.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
export Pulsar

"""
Pulsar{M<:TimingModel,T<:TOABase}
Represents a pulsar dataset with a timing model and a set of TOAs.
All TOAs must be of the same paradigm (narrowband/wideband).
"""
struct Pulsar{M<:TimingModel,T<:TOABase}
model::M
toas::Vector{T}
end

calc_lnlike(psr::Pulsar, params) = calc_lnlike(psr.model, psr.toas, params)
calc_lnlike_serial(psr::Pulsar, params) = calc_lnlike_serial(psr.model, psr.toas, params)

calc_lnprior(psr::Pulsar, params) = calc_lnprior(psr.model, params)
prior_transform(psr::Pulsar, cube) = prior_transform(psr.model, cube)

calc_lnpost(psr::Pulsar, params) = calc_lnpost(psr.model, psr.toas, params)
calc_lnpost_serial(psr::Pulsar, params) = calc_lnpost_serial(psr.model, psr.toas, params)
calc_lnpost_vectorized(psr::Pulsar, paramss) =
calc_lnpost_vectorized(psr.model, psr.toas, paramss)
Loading

0 comments on commit c40f9d3

Please sign in to comment.