-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
aef84fd
commit 760655b
Showing
7 changed files
with
389 additions
and
138 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import os | ||
import pandas as pd | ||
import orloge as ol | ||
import copy | ||
import yaml | ||
from utils import config_decoder | ||
|
||
|
||
def best_parameter_distribution(dir_path, file_condition='best_params_', output_file_name='best_params.csv', | ||
save_output=True, noise_level=0): | ||
file_list = [f_name for f_name in os.listdir(dir_path) if f_name.startswith(file_condition)] | ||
path_list = [[os.path.join(dir_path, f_name), f_name] for f_name in file_list | ||
if os.path.isfile(os.path.join(dir_path, f_name))] | ||
combined_csv = [] | ||
for f in path_list: | ||
temp_csv = pd.read_csv(f[0], index_col=0) | ||
temp_info = pd.DataFrame(dict(zip(['N', 'group_size', 'm', 's', 'seed'], f[1].strip('.csv').split('_')[2:])), index=[0]) | ||
temp_info['noise_level'] = noise_level | ||
temp_csv = pd.concat([temp_info, temp_csv], axis=1) | ||
combined_csv.append(copy.copy(temp_csv)) | ||
combined_csv = pd.concat(combined_csv).reset_index().drop(['index'], axis=1) | ||
|
||
if save_output: | ||
combined_csv.to_csv(os.path.join(dir_path, output_file_name), index=False, encoding='utf-8-sig') | ||
else: | ||
return combined_csv | ||
|
||
def cplex_log_files(dir_path, file_condition='log_', output_file_name='parsed_log.csv', | ||
save_output=True): | ||
file_list = [f_name for f_name in os.listdir(dir_path) if f_name.startswith(file_condition)] | ||
path_list = [[os.path.join(dir_path, f_name), f_name] for f_name in file_list | ||
if os.path.isfile(os.path.join(dir_path, f_name))] | ||
combined_csv = [] | ||
for f in path_list: | ||
temp_info = pd.DataFrame(dict(zip(['N', 'group_size', 'm', 's', 'seed'], f[1].strip('.txt').split('_')[1:])), index=[0]) | ||
flist = open(os.path.join(f[0])).readlines() | ||
print(flist[-1]) | ||
temp_info['time(sec)'] = flist[-1].split(' ')[-4].strip('(') | ||
temp_info['ticks'] = flist[-1].split(' ')[-2].strip('(') | ||
combined_csv.append(copy.copy(temp_info)) | ||
combined_csv = pd.concat(combined_csv).reset_index().drop(['index'], axis=1) | ||
if save_output: | ||
combined_csv.to_csv(os.path.join(dir_path, output_file_name), index=False, encoding='utf-8-sig') | ||
else: | ||
return combined_csv | ||
|
||
# dir_path = '/Users/hoomanzabeti/Desktop/GTResults/Noisy/Threshold' | ||
# dir_list = [i for i in os.walk(dir_path)][0][1] | ||
# | ||
# # print(pd.concat([best_parameter_distribution(os.path.join(dir_path,i,'Logs'),save_output=False) for i in dir_list]).reset_index()) | ||
# pd.concat([best_parameter_distribution(os.path.join(dir_path, i, 'Logs'), save_output=False) | ||
# for i in dir_list]).reset_index().to_csv(os.path.join(dir_path, 'best_params.csv'), | ||
# index=False, encoding='utf-8-sig') | ||
|
||
# dir_path = '/Users/hoomanzabeti/Desktop/GTResults/LP_IT' | ||
# dir_list = [i for i in os.walk(dir_path)][0][1] | ||
# pd.concat([cplex_log_files(os.path.join(dir_path, i, 'Logs'), save_output=False) | ||
# for i in dir_list]).reset_index().to_csv(os.path.join(dir_path, 'parsed_lp_logs.csv'), | ||
# index=False, encoding='utf-8-sig') | ||
|
||
dir_path = '/Users/hoomanzabeti/Desktop/GTResults/Noisy/Permutation/' | ||
dir_list = [i for i in os.walk(dir_path)][0][1] | ||
noise_level = [] | ||
for f in dir_list: | ||
with open(os.path.join(dir_path,f,'config.yml'), 'r') as config_file: | ||
config_dict = yaml.load(config_file, Loader=yaml.FullLoader) | ||
opts = config_decoder(config_dict['opts'])[0] | ||
noise_level.append(opts['permutation_noise_prob']) | ||
print(noise_level) | ||
print(dir_list) | ||
# print(pd.concat([best_parameter_distribution(os.path.join(dir_path,i,'Logs'),save_output=False) for i in dir_list]).reset_index()) | ||
pd.concat([best_parameter_distribution(os.path.join(dir_path, i, 'Logs'), save_output=False,noise_level=noise_level[idx]) | ||
for idx, i in enumerate(dir_list)]).reset_index().to_csv(os.path.join(dir_path, 'best_params.csv'), | ||
index=False, encoding='utf-8-sig') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,57 +1,68 @@ | ||
--- | ||
opts: | ||
'run_ID': 'debugging' | ||
'verbose': False | ||
'plotting': False | ||
'saving': True | ||
'graph_gen_method': 'no_multiple' | ||
'test_noise_methods': ['permutation'] | ||
'permutation_noise_prob': | ||
'mode': 'scalar' | ||
'values': [0.01] | ||
'theta_l': | ||
'mode': 'scalar' | ||
'values': [0.00] | ||
'theta_u': | ||
'mode': 'scalar' | ||
'values': [0.0625] | ||
'binary_symmetric_noise_prob': | ||
'mode': 'scalar' | ||
'values': [0.26] | ||
'seed': | ||
'mode': 'range' | ||
'values': [0,10,1] | ||
'N': | ||
'mode': 'scalar' | ||
'values': [1000] | ||
's': | ||
'mode': 'scalar' | ||
'values': [50] | ||
'group_size': | ||
'mode': 'scalar' | ||
'values': [16] | ||
'm': | ||
'mode': 'range' | ||
'values': [10,1010,10] | ||
'max_tests_per_individual': | ||
'mode': 'scalar' | ||
'values': [16] | ||
design_param: | ||
'general': | ||
'seed': | ||
'mode': 'range' | ||
'values': [0,1,1] | ||
'N': | ||
'mode': 'scalar' | ||
'values': [1000] | ||
'm': | ||
'mode': 'range' | ||
'values': [10,30,10] | ||
'verbose': False | ||
'generate_groups': | ||
'run_ID': 'debugging' | ||
'plotting': False | ||
'saving': True | ||
'graph_gen_method': 'no_multiple' | ||
'group_size': | ||
'mode': 'scalar' | ||
'values': [16] | ||
'max_tests_per_individual': | ||
'mode': 'scalar' | ||
'values': [16] | ||
'generate_individual_status': | ||
's': | ||
'mode': 'scalar' | ||
'values': [50] | ||
'generate_test_results': | ||
'test_noise_methods': ['permutation'] | ||
'permutation_noise_prob': | ||
'mode': 'scalar' | ||
'values': [0.01] | ||
'theta_l': | ||
'mode': 'scalar' | ||
'values': [0.00] | ||
'theta_u': | ||
'mode': 'scalar' | ||
'values': [0.0625] | ||
'binary_symmetric_noise_prob': | ||
'mode': 'scalar' | ||
'values': [0.26] | ||
|
||
decoder_param: | ||
'decode': | ||
'lambda_w': 1 | ||
'lambda_e': | ||
'mode': 'scalar' | ||
'values': [0.125,0.25,0.5,1,2,4,8] | ||
'defective_num_lower_bound': null | ||
'sensitivity_threshold': null | ||
'specificity_threshold': null | ||
'is_it_noiseless': False | ||
'lp_relaxation': False | ||
'solver_name': 'CPLEX_PY' | ||
'solver_options': | ||
'mode': 'exact' | ||
'timeLimit': 1800 | ||
'lambda_selection': | ||
'cross_validation': False | ||
'number_of_folds': 2 | ||
'cv_param': | ||
'mode': 'exact' | ||
'lambda_e': [0.125,0.25,0.5,1,2,4,8] | ||
#'mip':True | ||
'evaluation': | ||
'eval_metric': 'balanced_accuracy' | ||
|
||
lambda_selection: | ||
'cross_validation': False | ||
'number_of_folds': 5 | ||
'param': | ||
'lambda_e': [0.125,0.25,0.5,1,2,4,8] | ||
param: | ||
'lambda_w': 1 | ||
'lambda_p': 100 | ||
'lambda_n': 100 | ||
'defective_num_lower_bound': null | ||
'sensitivity_threshold': null | ||
'specificity_threshold': null | ||
'is_it_noiseless': False | ||
'lp_relaxation': False | ||
'solver_name': 'CPLEX_PY' | ||
'solver_options': | ||
'mode': 'exact' | ||
'timeLimit': 1800 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.