-
Notifications
You must be signed in to change notification settings - Fork 1
Big Query
Bill Hereth edited this page Apr 22, 2024
·
1 revision
A google doc explains how to connect to BigQuery: Access BigQuery Streetlight through Local Jupyter Notebook
#google cloud big query libaries
from google.cloud import bigquery
from google.oauth2 import service_account
key_path = r"C:\Users\bhereth\streetlight-temp-analysis-e2b201d26862.json"
credentials = service_account.Credentials.from_service_account_file(
key_path, scopes=["https://www.googleapis.com/auth/cloud-platform"],
)
client = bigquery.Client(credentials=credentials, project=credentials.project_id,)
#ease of use
daytype0 = '0: All Days (Mo-Su)'
daytype1 = '1: Weekday (Tu-Th)'
daytype2 = '2: Weekend Day (Sa-Su)'
dataper1 = '1. All year'
dataper2 = '2. Sep-Nov'
dataper3 = '3. Dec-Feb'
dataper4 = '4. Mar-May'
dataper5 = '5. Jun-Aug'
daypart0 = '0: All Day (12am-12am)'
daypart1 = '1: Early AM (12am-6am)'
daypart2 = '2: Peak AM (6am-9am)'
daypart3 = '3: Mid-Day (9am-3pm)'
daypart4 = '4: Peak PM (3pm-6pm)'
daypart5 = '5: Late PM (6pm-12am)'
#zones for interzonal definition
dImportTables = [
['ut-udot-adap-dev.streetlight_data.udot_commercial_all_year_2019'],
['ut-udot-adap-dev.streetlight_data.udot_commercial_fall_2019' ],
['ut-udot-adap-dev.streetlight_data.udot_commercial_spring_2019' ],
['ut-udot-adap-dev.streetlight_data.udot_commercial_summer_2019' ],
['ut-udot-adap-dev.streetlight_data.udot_commercial_winter_2019' ]
]
sJoinTable = "ut-udot-adap-dev.streetlight_data.wfrc_streetlight_taz"
#create query of all subareaid to subareaid truck flows using join to taz table with subareaid field
dfTruckDataBySubareaID = pd.DataFrame()
for dit in dImportTables:
sql = """
SELECT
orig_table.SUBAREAID AS origin_subareaid,
dest_table.SUBAREAID AS destination_subareaid,
od_table.mode_of_travel AS mode_of_travel,
od_table.vehicle_weight AS vehicle_weight,
od_table.day_type AS day_type,
od_table.day_part AS day_part,
od_table.data_period AS data_period,
SUM(od_table.o_d_traffic_sample_trip_counts) AS od_trip_counts_sum,
SUM(od_table.o_d_traffic_calibrated_trip_volume) AS od_trip_volume_sum,
COUNT(mode_of_travel) AS num_records
FROM
(""" + dit[0] + """ as od_table
LEFT JOIN
""" + sJoinTable + """ AS orig_table
ON od_table.origin_zone_name = orig_table.SL_COTAZID)
LEFT JOIN """ + sJoinTable + """ AS dest_table
ON od_table.destination_zone_name = dest_table.SL_COTAZID
GROUP BY
orig_table.SUBAREAID,
dest_table.SUBAREAID,
od_table.mode_of_travel,
od_table.vehicle_weight,
od_table.day_type,
od_table.day_part,
od_table.data_period
"""
#display(sql)
dfQuery = client.query(sql).to_dataframe()
- Download and install driver: https://cloud.google.com/bigquery/docs/reference/odbc-jdbc-drivers
- Configure ODBC Connection
- Open ODBC Data Sources Administrator (64-bit or 32-bit)
- Click
System DSN
tab - Select
Google BigQuery
- Select
Configure
- Have BigQuery key email and file (as explained in Connecting in Python/Jupyter, above)
- In
email
field, add email address associated with from key - In
Key File Path
enter json filename with key - In
Catalog (Project)
select Google Cloud project (dropdown should auto-populate based on key) - In
Dataset
select name of dataset (dropdown should auto-populate based on key) - Click
Test
andOK
if works
- In MS Access:
- Click
External Data
tab - Click
New Data Source
dropdown,From Other Sources
Menu, andODBC Database
- Click
Link to the data source by creating a linked table
- In
Select Data Source
window, click 'Machine Data Source` tab - Select
Google BigQuery
, and clickOK
- Select the table name you wish to connect to, and click
OK
- Select the unique id field (see https://unifiedplan.org/2023-utah-household-travel-survey/core-dataset-guide/#using-the-data), and click
OK
- Click