Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
Kilichbek committed Aug 30, 2023
0 parents commit 31a67f2
Show file tree
Hide file tree
Showing 7 changed files with 256 additions and 0 deletions.
13 changes: 13 additions & 0 deletions assets/css/app.css
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
.CodeMirror {
font-size: .8em;
}

.CodeMirror-scroll {
overflow-y: hidden;
overflow-x: auto;
}

#header_img {
margin-top: 2em;
margin-bottom: 1em;
}
5 changes: 5 additions & 0 deletions assets/css/bootstrap.min.css

Large diffs are not rendered by default.

Binary file added assets/img/dialog_based_qa.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assets/img/qual_examples.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assets/img/web_teaser.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
10 changes: 10 additions & 0 deletions assets/js/app.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
$(document).ready(function() {
var editor = CodeMirror.fromTextArea(document.getElementById("bibtex"), {
lineNumbers: false,
lineWrapping: true,
readOnly:true
});
$(function () {
$('[data-toggle="tooltip"]').tooltip()
});
});
228 changes: 228 additions & 0 deletions index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
<html>

<head lang="en">
<meta charset="UTF-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">

<title>Modulated Periodic Activations</title>

<meta name="description" content="">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="apple-touch-icon" href="apple-touch-icon.png">

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-awesome.min.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/codemirror/5.8.0/codemirror.min.css">
<link rel="stylesheet" href="assets/css/app.css">

<link rel="stylesheet" href="assets/css/bootstrap.min.css">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/codemirror/5.8.0/codemirror.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.5.3/clipboard.min.js"></script>
<script src="js/app.js"></script>
</head>

<body>
<div class="container">
<div class="row">
<h2 class="col-md-12 text-center">
Affective Visual Dialog: A Large-Scale Benchmark for Emotional Reasoning
Based on Visually Grounded Conversations</br>
<small></small>
</h2>
</div>

<!--- Authors List --->
<div class="row">
<div class="col-md-12 text-center">
<ul class="list-inline">
<li>
<a href="https://kilichbek.github.io/webpage/">
Kilichbek Haydarov
</a>
</br>KAUST
</li>
<li>
<a href="https://xiaoqian-shen.github.io/">
Xiaoqian Shen
</a>
</br>KAUST
</li>
<li>
<a href="https://avinashsai.github.io/">
Avinash Madasu
</a>
</br>KAUST
</li>
<li>
<a href="#">
Mahmoud Salem
</a>
</br>KAUST
</li>
</br>
<li>
<a href="https://healthunity.org/team/jia-li/">
Jia Li
</a>
</br>Stanford University, HealthUnity
</li>
<li>
<a href="https://research.google/people/GamaleldinFathyElsayed/">
Gamaleldin Elsayed
</a>
</br>Google DeepMind
</li>
<li>
<a href="https://www.mohamed-elhoseiny.com/">
Mohamed Elhoseiny
</a>
</br>KAUST
</li>
</ul>
</div>
</div>

<!--- Teaser ---->
<div class="row" id="header_img">
<figure class="col&#45;md&#45;4 col&#45;md&#45;offset&#45;4">
<image src="assets/img/web_teaser.png" class="img&#45;responsive" alt="overview">
<figcaption>
</figcaption>
</figure>
</div>
<!--- Links --->
<div class="row">
<div class="col-md-6 col-md-offset-3">
<h3>
<!-- <h3 class="text&#45;center"> -->
Links
</h3>
<div class="col-md-6 col-md-offset-3 text-center">
<ul class="nav nav-pills nav-justified">
<li>
<a href="#">
Paper
</a>
</li>
<li>
<a href="#">
Dataset
</a>
</li>
<li>
<a href="https://github.com/Vision-CAIR/affective-vision-language/tree/main/affect-visdial">
Code
</a>
</li>
<!---
<li>
<a href="img/modsine.txt">
BibTeX
</a>
</li>
--->
<li>
<a href="mailto:[email protected]">
Contact
</a>
</li>
</ul>
</div>
</div>
</div>

<!--- End of Links --->

<!--- Abstract --->
<div class="row">
<div class="col-md-6 col-md-offset-3">
<h3>
Overview
</h3>
<p class="text-justify">
We introduce Affective Visual Dialog, an emotion explanation
and reasoning task as a testbed for research on understanding
the formation of emotions in visually-grounded
conversations. The task involves three skills:
(1) Dialog-based Question Answering (2) Dialog-based Emotion Prediction
and (3) Affective emotion explanation generation
based on the dialog. Our key contribution is the collection of a
large-scale dataset, dubbed AffectVisDial, consisting of 50K
10-turn visually grounded dialogs as well as
concluding emotion attributions and dialog-informed textual emotion
explanations, resulting in a total of 27,180
working hours. We explain our design decisions in collecting the
dataset and introduce the questioner and answerer tasks that are
associated with the participants in the
conversation. We train and demonstrate solid Affective Visual Dialog
baselines adapted from state-of-the-art models. Remarkably,
the responses generated by our models show promising emotional
reasoning abilities in response to visually grounded conversations
</p>
</div>
</div>

<!--- Data Collection Process--->
<!--- Abstract --->
<div class="row">
<div class="col-md-6 col-md-offset-3">
<h3>
Data Collection Process
</h3>
<!-- 16:9 aspect ratio -->
<div class="embed-responsive embed-responsive-16by9">
<iframe class="embed-responsive-item" src="https://drive.google.com/file/d/10BGIvpQH_4tkXl_QVZJf5bNQtKXhakmo/preview" allow="autoplay"></iframe>
</div>
</div>
</div>

<div class="row">
<div class="col-md-6 col-md-offset-3">
<h3>
Qualitative Results
</h3>

<div id="header_img">
<figure class="figure">
<image src="assets/img/dialog_based_qa.png" class="img&#45;responsive" alt="dialog_task">
<figcaption class="figure-caption text-center">
Qualitative Examples of Dialog-Based Question Answering Task. Open the image in new tab for better view.

</figcaption>
</figure>
</div>

<figure class="figure">
<image src="assets/img/qual_examples.png" class="img&#45;responsive" alt="explanation_task">
<figcaption class="figure-caption text-center">
Qualitative Examples of Emotion Explanation Generation Task. Open the image in new tab for better view.
</figcaption>
</figure>

</div>
</div>
<div class="row">
<div class="col-md-6 col-md-offset-3">
<h3>
Acknowledgements
</h3>
<p class="text-justify">
This project is funded by KAUST
BAS/1/1685-01-01, SDAIA-KAUST Center of Excellence
in Data Science and Artificial Intelligence. The authors express
their appreciation to Jack Urbanek, Sirojiddin Karimov, and Umid Nejmatullayev
for their valuable assistance in data collection setup. Lastly, the authors extend their
gratitude to the diligent efforts of the Amazon Mechanical
Turkers, DeepenAI, and SmartOne teams, as their contributions were indispensable for the successful completion of
this work.
</p>
</div>
</div>
</div>
</body>
</html>

0 comments on commit 31a67f2

Please sign in to comment.