-
Notifications
You must be signed in to change notification settings - Fork 71
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
47 changed files
with
3,515 additions
and
699 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
import argparse | ||
import sqlite3 | ||
from collections import defaultdict | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
from tqdm import tqdm | ||
|
||
from . import logger | ||
from .utils.read_write_model import ( | ||
CAMERA_MODEL_NAMES, | ||
Camera, | ||
Image, | ||
Point3D, | ||
write_model, | ||
) | ||
|
||
|
||
def recover_database_images_and_ids(database_path): | ||
images = {} | ||
cameras = {} | ||
db = sqlite3.connect(str(database_path)) | ||
ret = db.execute("SELECT name, image_id, camera_id FROM images;") | ||
for name, image_id, camera_id in ret: | ||
images[name] = image_id | ||
cameras[name] = camera_id | ||
db.close() | ||
logger.info( | ||
f"Found {len(images)} images and {len(cameras)} cameras in database." | ||
) | ||
return images, cameras | ||
|
||
|
||
def quaternion_to_rotation_matrix(qvec): | ||
qvec = qvec / np.linalg.norm(qvec) | ||
w, x, y, z = qvec | ||
R = np.array( | ||
[ | ||
[ | ||
1 - 2 * y * y - 2 * z * z, | ||
2 * x * y - 2 * z * w, | ||
2 * x * z + 2 * y * w, | ||
], | ||
[ | ||
2 * x * y + 2 * z * w, | ||
1 - 2 * x * x - 2 * z * z, | ||
2 * y * z - 2 * x * w, | ||
], | ||
[ | ||
2 * x * z - 2 * y * w, | ||
2 * y * z + 2 * x * w, | ||
1 - 2 * x * x - 2 * y * y, | ||
], | ||
] | ||
) | ||
return R | ||
|
||
|
||
def camera_center_to_translation(c, qvec): | ||
R = quaternion_to_rotation_matrix(qvec) | ||
return (-1) * np.matmul(R, c) | ||
|
||
|
||
def read_nvm_model( | ||
nvm_path, intrinsics_path, image_ids, camera_ids, skip_points=False | ||
): | ||
with open(intrinsics_path, "r") as f: | ||
raw_intrinsics = f.readlines() | ||
|
||
logger.info(f"Reading {len(raw_intrinsics)} cameras...") | ||
cameras = {} | ||
for intrinsics in raw_intrinsics: | ||
intrinsics = intrinsics.strip("\n").split(" ") | ||
name, camera_model, width, height = intrinsics[:4] | ||
params = [float(p) for p in intrinsics[4:]] | ||
camera_model = CAMERA_MODEL_NAMES[camera_model] | ||
assert len(params) == camera_model.num_params | ||
camera_id = camera_ids[name] | ||
camera = Camera( | ||
id=camera_id, | ||
model=camera_model.model_name, | ||
width=int(width), | ||
height=int(height), | ||
params=params, | ||
) | ||
cameras[camera_id] = camera | ||
|
||
nvm_f = open(nvm_path, "r") | ||
line = nvm_f.readline() | ||
while line == "\n" or line.startswith("NVM_V3"): | ||
line = nvm_f.readline() | ||
num_images = int(line) | ||
assert num_images == len(cameras) | ||
|
||
logger.info(f"Reading {num_images} images...") | ||
image_idx_to_db_image_id = [] | ||
image_data = [] | ||
i = 0 | ||
while i < num_images: | ||
line = nvm_f.readline() | ||
if line == "\n": | ||
continue | ||
data = line.strip("\n").split(" ") | ||
image_data.append(data) | ||
image_idx_to_db_image_id.append(image_ids[data[0]]) | ||
i += 1 | ||
|
||
line = nvm_f.readline() | ||
while line == "\n": | ||
line = nvm_f.readline() | ||
num_points = int(line) | ||
|
||
if skip_points: | ||
logger.info(f"Skipping {num_points} points.") | ||
num_points = 0 | ||
else: | ||
logger.info(f"Reading {num_points} points...") | ||
points3D = {} | ||
image_idx_to_keypoints = defaultdict(list) | ||
i = 0 | ||
pbar = tqdm(total=num_points, unit="pts") | ||
while i < num_points: | ||
line = nvm_f.readline() | ||
if line == "\n": | ||
continue | ||
|
||
data = line.strip("\n").split(" ") | ||
x, y, z, r, g, b, num_observations = data[:7] | ||
obs_image_ids, point2D_idxs = [], [] | ||
for j in range(int(num_observations)): | ||
s = 7 + 4 * j | ||
img_index, kp_index, kx, ky = data[s : s + 4] | ||
image_idx_to_keypoints[int(img_index)].append( | ||
(int(kp_index), float(kx), float(ky), i) | ||
) | ||
db_image_id = image_idx_to_db_image_id[int(img_index)] | ||
obs_image_ids.append(db_image_id) | ||
point2D_idxs.append(kp_index) | ||
|
||
point = Point3D( | ||
id=i, | ||
xyz=np.array([x, y, z], float), | ||
rgb=np.array([r, g, b], int), | ||
error=1.0, # fake | ||
image_ids=np.array(obs_image_ids, int), | ||
point2D_idxs=np.array(point2D_idxs, int), | ||
) | ||
points3D[i] = point | ||
|
||
i += 1 | ||
pbar.update(1) | ||
pbar.close() | ||
|
||
logger.info("Parsing image data...") | ||
images = {} | ||
for i, data in enumerate(image_data): | ||
# Skip the focal length. Skip the distortion and terminal 0. | ||
name, _, qw, qx, qy, qz, cx, cy, cz, _, _ = data | ||
qvec = np.array([qw, qx, qy, qz], float) | ||
c = np.array([cx, cy, cz], float) | ||
t = camera_center_to_translation(c, qvec) | ||
|
||
if i in image_idx_to_keypoints: | ||
# NVM only stores triangulated 2D keypoints: add dummy ones | ||
keypoints = image_idx_to_keypoints[i] | ||
point2D_idxs = np.array([d[0] for d in keypoints]) | ||
tri_xys = np.array([[x, y] for _, x, y, _ in keypoints]) | ||
tri_ids = np.array([i for _, _, _, i in keypoints]) | ||
|
||
num_2Dpoints = max(point2D_idxs) + 1 | ||
xys = np.zeros((num_2Dpoints, 2), float) | ||
point3D_ids = np.full(num_2Dpoints, -1, int) | ||
xys[point2D_idxs] = tri_xys | ||
point3D_ids[point2D_idxs] = tri_ids | ||
else: | ||
xys = np.zeros((0, 2), float) | ||
point3D_ids = np.full(0, -1, int) | ||
|
||
image_id = image_ids[name] | ||
image = Image( | ||
id=image_id, | ||
qvec=qvec, | ||
tvec=t, | ||
camera_id=camera_ids[name], | ||
name=name, | ||
xys=xys, | ||
point3D_ids=point3D_ids, | ||
) | ||
images[image_id] = image | ||
|
||
return cameras, images, points3D | ||
|
||
|
||
def main(nvm, intrinsics, database, output, skip_points=False): | ||
assert nvm.exists(), nvm | ||
assert intrinsics.exists(), intrinsics | ||
assert database.exists(), database | ||
|
||
image_ids, camera_ids = recover_database_images_and_ids(database) | ||
|
||
logger.info("Reading the NVM model...") | ||
model = read_nvm_model( | ||
nvm, intrinsics, image_ids, camera_ids, skip_points=skip_points | ||
) | ||
|
||
logger.info("Writing the COLMAP model...") | ||
output.mkdir(exist_ok=True, parents=True) | ||
write_model(*model, path=str(output), ext=".bin") | ||
logger.info("Done.") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--nvm", required=True, type=Path) | ||
parser.add_argument("--intrinsics", required=True, type=Path) | ||
parser.add_argument("--database", required=True, type=Path) | ||
parser.add_argument("--output", required=True, type=Path) | ||
parser.add_argument("--skip_points", action="store_true") | ||
args = parser.parse_args() | ||
main(**args.__dict__) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
""" | ||
Code for loading models trained with EigenPlaces (or CosPlace) as a global | ||
features extractor for geolocalization through image retrieval. | ||
Multiple models are available with different backbones. Below is a summary of | ||
models available (backbone : list of available output descriptors | ||
dimensionality). For example you can use a model based on a ResNet50 with | ||
descriptors dimensionality 1024. | ||
EigenPlaces trained models: | ||
ResNet18: [ 256, 512] | ||
ResNet50: [128, 256, 512, 2048] | ||
ResNet101: [128, 256, 512, 2048] | ||
VGG16: [ 512] | ||
CosPlace trained models: | ||
ResNet18: [32, 64, 128, 256, 512] | ||
ResNet50: [32, 64, 128, 256, 512, 1024, 2048] | ||
ResNet101: [32, 64, 128, 256, 512, 1024, 2048] | ||
ResNet152: [32, 64, 128, 256, 512, 1024, 2048] | ||
VGG16: [ 64, 128, 256, 512] | ||
EigenPlaces paper (ICCV 2023): https://arxiv.org/abs/2308.10832 | ||
CosPlace paper (CVPR 2022): https://arxiv.org/abs/2204.02287 | ||
""" | ||
|
||
import torch | ||
import torchvision.transforms as tvf | ||
|
||
from ..utils.base_model import BaseModel | ||
|
||
|
||
class EigenPlaces(BaseModel): | ||
default_conf = { | ||
"variant": "EigenPlaces", | ||
"backbone": "ResNet101", | ||
"fc_output_dim": 2048, | ||
} | ||
required_inputs = ["image"] | ||
|
||
def _init(self, conf): | ||
self.net = torch.hub.load( | ||
"gmberton/" + conf["variant"], | ||
"get_trained_model", | ||
backbone=conf["backbone"], | ||
fc_output_dim=conf["fc_output_dim"], | ||
).eval() | ||
|
||
mean = [0.485, 0.456, 0.406] | ||
std = [0.229, 0.224, 0.225] | ||
self.norm_rgb = tvf.Normalize(mean=mean, std=std) | ||
|
||
def _forward(self, data): | ||
image = self.norm_rgb(data["image"]) | ||
desc = self.net(image) | ||
return { | ||
"global_descriptor": desc, | ||
} |
Oops, something went wrong.