Skip to content

VickiCui/Loire

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Code for EMNLP Findings 2020 paper: Beyond Language: Learning Commonsense from Images for Reasoning

Installation

  • Setup a conda environment and install some prerequisite packages
conda create -n vibert python=3.6  # Create a virtual environment
source activate vibert             # Activate virtual environment

pip install -r  requirements.txt

git clone https://github.com/cocodataset/cocoapi.git  # Install pycocotools
cd cocoapi/PythonAPI
python setup.py build_ext install

python -m nltk.downloader all           # Install NLTK data

Scene Layout Generator

  • Download the COCO datasets to train layout generator
cd layout_generator
./experiments/scripts/fetch_data.sh
cd ..
  • train layout generator
cd layout_generator
python -u ./tools/train.py 
--cuda --batch_size=8 --data_dir=./data/coco --log_dir=./coco
--exp_name=coco --attn_emb=True --output_cls_size=83
--finetune_lr=5e-5 --max_input_length=64 --max_output_length=20
--num_workers=1 --accumulation_steps=4 --n_epochs=15 --warmup=0.05 

the checkpoint of ViBERT will be saved at $log_dir

Commonsense Reasoning

Data

  • Download the Commonsense & WinoGrande datasets
cd reasoning
./download_data.sh
cd ..

Train

  • do commonsense reasoning on CommonsenseQA with BERT+ViBERT
cd reasoning
CUDA_VISIBLE_DEVICES=0,1 python -u train.py --cuda --num_workers=1 --parallel\
    --epochs=5 --model_name=Loire --do_train\
    --task=commonsenseqa\
    --data_dir=$PATH_TO_DATA\
    --model=bert-base --max_seq_length=64 --seed=1\
    --batch_size=16 --accumulation_steps=1 --log_per_steps=500\
    --warmup=0.1 --lr=1e-5 --adam_betas='(0.9, 0.98)' --adam_eps=1e-06\
    --dropout=0.3 --weight_decay=0.01\
    --feature --norm --proj=f2t prefix\
    --pretrained_bert=$PATH_TO_VIBERT\
    --save_ckpt
  • do commonsense reasoning on WinoGrande with BERT+ViBERT
cd reasoning
CUDA_VISIBLE_DEVICES=0,1 python -u train.py --cuda --num_workers=1 --parallel\
    --epochs=10 --model_name=Loire --do_train\
    --task=winogrande --train_size=xl\
    --data_dir=$PATH_TO_DATA\
    --model=bert-base --max_seq_length=64 --seed=1\
    --batch_size=16 --accumulation_steps=1 --log_per_steps=500\
    --warmup=0.1 --lr=1e-5 --adam_betas='(0.9, 0.98)' --adam_eps=1e-06\
    --dropout=0.3 --weight_decay=0.01\
    --feature --norm --proj=f2t\
    --pretrained_bert=$PATH_TO_VIBERT\
    --save_ckpt

For training on different sizes of training set, set --size={xs,s,m,l,xl}'accordingly.

For commonsense reasoning with RoBERTa+ViBERT, set --model=roberta-base or --model=roberta-large, and change other parameters, such as --max_seq_length, --batch_size, accordingly.

The model will be trained using single GPU by default. To use multiple GPUs please set the --parallel flag and modify the batch size using the --batch_size flag accordingly.

The model will add a LayerNorm after Linear layer by default. To not add a LayerNorm, please remove the --norm flag.

Checkpoint files can be found in ./logs/commonsenseqa or ./logs/winogrande

Test

  • test on CommonsenseQA with BERT+ViBERT
python -u train.py 
--cuda --model_name=vibert --do_pred --feature --norm
--max_seq_length=64 --model=bert --task=commonsense_qa
--data_dir=./data/commonsenseQA
--pretrained_bert=$YOUR_PATH_SAVED_VIBERT
--pred_name=$OUTPUT_FILENAME
--pretrained=$THE_CHECKPOINT_TO_BE_EVALUATED

For test on WinoGrande, set --task=winogrande and --data_dir=./data/WinoGrande.

For test RoBERTa+ViBERT, set --model=roberta.

Parameters --feature, --norm, --max_seq_length, --model, pretrained_bert should be consistent with the parameters set during training

Cite

@article{cui2020beyond,
  title={Beyond Language: Learning Commonsense from Images for Reasoning},
  author={Cui, Wanqing and Lan, Yanyan and Pang, Liang and Guo, Jiafeng and Cheng, Xueqi},
  journal={arXiv preprint arXiv:2010.05001},
  year={2020}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published