-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
181 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
|
||
############################################################### | ||
import time | ||
import joblib | ||
import pandas as pd | ||
|
||
from sklearn.pipeline import Pipeline | ||
from sklearn.impute import SimpleImputer | ||
from sklearn.preprocessing import OneHotEncoder | ||
from sklearn.preprocessing import StandardScaler | ||
from sklearn.compose import ColumnTransformer | ||
from sklearn.model_selection import cross_val_score | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.neural_network import MLPClassifier | ||
from sklearn.preprocessing import FunctionTransformer | ||
from sklearn.svm import SVC | ||
|
||
# Step 1 ##################################################################################### | ||
def filter_data(df): | ||
|
||
df_copy = df.copy() | ||
columns_to_drop = [ | ||
'id', | ||
'url', | ||
'region', | ||
'region_url', | ||
'price', | ||
'manufacturer', | ||
'image_url', | ||
'description', | ||
'posting_date', | ||
'lat', | ||
'long' | ||
] | ||
|
||
return df_copy.drop(columns_to_drop, axis=1) | ||
|
||
|
||
# Step 2 ###################################################################################### | ||
def outliers_filler(df): | ||
df_copy = df.copy() | ||
|
||
def calculate_outliers(data): | ||
q25 = data.quantile(0.25) | ||
q75 = data.quantile(0.75) | ||
iqr = q75 - q25 | ||
boundaries = (q25 - 1.5 * iqr, q75 + 1.5 * iqr) | ||
|
||
return boundaries | ||
|
||
boundaries = calculate_outliers(df_copy['year']) | ||
df_copy.loc[df['year'] < boundaries[0], 'year'] = round(boundaries[0]) | ||
df_copy.loc[df['year'] > boundaries[1], 'year'] = round(boundaries[1]) | ||
return df_copy | ||
|
||
# Step 3 ##################################################################################### | ||
def short_model(x): | ||
if not pd.isna(x): | ||
return x.lower().split(' ')[0] | ||
else: | ||
return x | ||
|
||
def short_model_age_category(df_copy): | ||
#df_copy = df_copy.copy() | ||
# Добавляем фичу "short_model" – это первое слово из колонки model | ||
df_copy.loc[:, 'short_model'] = df_copy['model'].apply(short_model) | ||
# Добавляем фичу "age_category" (категория возраста) | ||
df_copy.loc[:, 'age_category'] = df_copy['year'].apply(lambda x: 'new' if x > 2013 else ('old' if x < 2006 else 'average')) | ||
return df_copy | ||
|
||
# Step 4 ##################################################################################### | ||
def numerical_categorical_transformer(df_copy): | ||
#df_copy = df_copy.copy() | ||
numerical = df_copy.select_dtypes(include=['int64', 'float64']).columns | ||
categorical = df_copy.select_dtypes(include=['object']).columns | ||
# В категориальных фичах заменяем пропуски модой | ||
for feat in categorical: | ||
df_copy[feat].fillna(df_copy[feat].mode()[0], inplace=True) | ||
|
||
# В численных фичах заменяем пропуски медианой | ||
for feat in numerical: | ||
df_copy[feat].fillna(df_copy[feat].median(), inplace=True) | ||
return df_copy | ||
|
||
# Step 5 ##################################################################################### | ||
def encoding_One_Hot(df_copy): | ||
#df_copy = df_copy.copy() | ||
columns_to_encode = [ | ||
'fuel', | ||
'title_status', | ||
'transmission', | ||
'state', | ||
'short_model', | ||
'age_category' | ||
] | ||
|
||
encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) | ||
encoder.fit(df_copy[columns_to_encode]) | ||
|
||
df_copy.loc[:, encoder.get_feature_names()] = encoder.transform(df_copy[columns_to_encode]) | ||
return df_copy | ||
|
||
# Step 6 #################################################################################### | ||
def odometer_scaling(df_copy): | ||
#df_copy = df_copy.copy() | ||
# Масштабируем числовые фичи | ||
|
||
scaler = StandardScaler() | ||
df_copy['odometer_std'] = scaler.fit_transform(df_copy[['odometer']]) | ||
return df_copy | ||
|
||
# Step 7 #################################################################################### | ||
def columns_dropping(df_copy): | ||
#df_copy = df_copy.copy() | ||
columns_to_drop = [ | ||
'year', | ||
'model', | ||
'fuel', | ||
'odometer', | ||
'title_status', | ||
'transmission', | ||
'state', | ||
'short_model', | ||
'age_category' | ||
] | ||
df_copy = df_copy.drop(columns_to_drop, axis=1) | ||
return df_copy | ||
# Step 8 #################################################################################### | ||
def x_y_preparation_for_fit(df_copy): | ||
#df_copy = df_copy.copy() | ||
X = df_copy.drop(['price_category'], axis=1) | ||
y = df_copy['price_category'] | ||
return X, y | ||
|
||
def main(): | ||
print('Loan Prediction Pipeline') | ||
# Считываем данные из файла в датафрейм | ||
df = pd.read_csv('data/30.6 homework.csv') | ||
|
||
step_1 = FunctionTransformer(filter_data) | ||
step_2 = FunctionTransformer(outliers_filler) | ||
step_3 = FunctionTransformer(short_model_age_category) | ||
step_4 = FunctionTransformer(numerical_categorical_transformer) | ||
step_5 = FunctionTransformer(encoding_One_Hot) | ||
step_6 = FunctionTransformer(odometer_scaling) | ||
step_7 = FunctionTransformer(columns_dropping) | ||
step_8 = FunctionTransformer(x_y_preparation_for_fit) | ||
|
||
df_final = step_1.transform(df) | ||
df_final = step_2.transform(df_final) | ||
df_final = step_3.transform(df_final) | ||
df_final = step_4.transform(df_final) | ||
df_final = step_5.transform(df_final) | ||
df_final = step_6.transform(df_final) | ||
df_final = step_7.transform(df_final) | ||
X, y = step_8.transform(df_final) | ||
|
||
|
||
|
||
models = [ | ||
LogisticRegression(solver='liblinear'), | ||
RandomForestClassifier(), | ||
SVC() | ||
] | ||
|
||
for m in models: | ||
start = time.time() | ||
score = cross_val_score(m, X, y, cv=4, scoring='accuracy') | ||
elapsed_time = time.time() - start | ||
print(f'model: {type(m).__name__}, acc_mean: {score.mean():.4f}, acc_std: {score.std():.4f}' | ||
f", with a fitting time: {elapsed_time:.3f}") | ||
|
||
|
||
|
||
|
||
# Press the green button in the gutter to run the script. | ||
if __name__ == '__main__': | ||
main() | ||
|
||
|