Skip to content

UserQuestions/AlgebraicMultigrid.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Algebraic Multigrid (AMG)

Build Status Coverage Status codecov.io

This package lets you solve sparse linear systems using Algebraic Multigrid (AMG). This works especially well for symmetric positive definite matrices.

Usage

using AMG

A = poisson(1000) # Creates a sample symmetric positive definite sparse matrix
ml = ruge_stuben(A) # Construct a Ruge-Stuben solver
# Multilevel Solver
# -----------------
# Operator Complexity: 1.9859906604402935
# Grid Complexity: 1.99
# No. of Levels: 8
# Coarse Solver: AMG.Pinv()
# Level     Unknowns     NonZeros
# -----     --------     --------
#     1         1000         2998 [50.35%]
#     2          500         1498 [25.16%]
#     3          250          748 [12.56%]
#     4          125          373 [ 6.26%]
#     5           62          184 [ 3.09%]
#     6           31           91 [ 1.53%]
#     7           15           43 [ 0.72%]
#     8            7           19 [ 0.32%]


solve(ml, A * ones(1000)) # should return ones(1000)

As a Preconditioner

You can use AMG as a preconditioner for Krylov methods such as Conjugate Gradients.

import IterativeSolvers: cg
p = aspreconditioner(ml)
c = cg(A, A*ones(1000), Pl = p) 

Features and Roadmap

This package currently supports:

AMG Styles:

  • Ruge-Stuben Solver
  • Smoothed Aggregation (SA)

Strength of Connection:

  • Classical Strength of Connection
  • Symmetric Strength of Connection

Smoothers:

  • Gauss Seidel (Symmetric, Forward, Backward)

Cycling:

  • V cycle

In the future, this package will support:

  1. Other splitting methods (like CLJP)
  2. SOR, Jacobi smoothers
  3. W, F, AMLI cycles

Acknowledgements

This package has been heavily inspired by the PyAMG project.

About

Algebraic Multigrid in Julia

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%