###Pipeline:
- prepare calibration data
- upload calibration data to kitti calibration server
- download the calibration result
- use this tool and rectify new data.
###data please refer to following document before preparing data
- calibration_data_example : left/right frame, lidar and config file
- calibration_result_example :
- calib_cam_to_cam.txt: camera calibration result
- calib_cam_to_range.txt : rotation and translation between left camera and lidar
###setting
- chessboard square length : 8 cm
- chessboard size : 6 x 8 or 8 x 12
- chessboard number : 12
- baseline : 57 cm
- camera resolution (before rectifing) : 768 x 1024
- camera resolution (after rectifing) : 702 x 945
- Fov : 60
###calibration
- refer to introduction of kitti calibration server
###rectify
####Example
import cv2
import matplotlib.pyplot as plt
import rectify
import pandas as pd
import sys
img1_dir = sys[1]
img2_dir = sys[2]
lidar_dir = sys[3]
calibration_dir = sys[4]
img1 = cv2.imread(img1_dir)
img2 = cv2.imread(img2_dir)
lidar = pd.read_csv(lidar_dir,header=None,sep=' ')
lidar = lidar.values
calibration = rectify.Stereo_Lidar(input_dir = calibration_dir,baseline = 0.57)
ret = calibration.rectify((img1,img2,lidar))
# undistorted img1
plt.figure()
plt.imshow(ret[0])
plt.title('left')
plt.waitforbuttonpress()
# undistorted img2
plt.figure()
plt.imshow(ret[1])
plt.title('right')
plt.waitforbuttonpress()
# undistorted depth
plt.figure()
plt.imshow(ret[2])
plt.title('depth')
plt.waitforbuttonpress()
# undistorted disparity
plt.figure()
plt.imshow(ret[3])
plt.title('disparity')
plt.waitforbuttonpress()
# check disparity to see whether textures of two patch are the same or not
rectify.check_disparity(ret[0],ret[1],ret[3])
# check epipolar line
ret[0][:,:,0] = 0
ret[1][:,:,2] = 0
M = np.float32([[1, 0, 0], [0, 1, 0]])
ret[0]= cv2.warpAffine(ret[0], M, (ret[0].shape[1], ret[0].shape[0]))
img = cv2.addWeighted(ret[0],0.4,ret[1],0.6,1)
plt.figure()
plt.title('check epipolar line')
plt.imshow(img)
plt.waitforbuttonpress()
some outlier still exist in the undistorted disparity,you need to use stereo matching algorithm to remove them.