Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added code for Principal Component Analysis #97

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
198 changes: 198 additions & 0 deletions PCA_Code.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"### **1. Installing Packages**"
],
"metadata": {
"id": "pSXJVwyF2Ed8"
}
},
{
"cell_type": "code",
"source": [
"!pip install -U scikit-learn"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "WMc2NjhLzTk_",
"outputId": "baf5c845-5778-4adf-cecd-340b49845107"
},
"execution_count": 29,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.3.1)\n",
"Requirement already satisfied: numpy<2.0,>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.23.5)\n",
"Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.3)\n",
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.3.2)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.2.0)\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### **2. Importing Necessary Modules**"
],
"metadata": {
"id": "VqbC4ieK13sm"
}
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.decomposition import PCA\n",
"from sklearn.datasets import load_digits"
],
"metadata": {
"id": "emxbvfX5yRU1"
},
"execution_count": 30,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### **3. Loading the datatset**"
],
"metadata": {
"id": "bT4CTPVm19aZ"
}
},
{
"cell_type": "code",
"source": [
"# Load the Digits dataset\n",
"digits = load_digits()\n",
"X = digits.data\n",
"y = digits.target"
],
"metadata": {
"id": "j4-ZKuDcyZEU"
},
"execution_count": 31,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### **4. Applying PCA and reducing the image**"
],
"metadata": {
"id": "-n5etZJf2FJ1"
}
},
{
"cell_type": "code",
"source": [
"# Randomly select an image for demonstration\n",
"random_image_index = np.random.randint(0, X.shape[0])\n",
"\n",
"# Define the number of principal components you want to keep\n",
"n_components = int(input(\"Enter the number of components you want to keep (in the range of 0 to 64): \"))\n",
"\n",
"# Apply PCA to the image data\n",
"pca = PCA(n_components=n_components)\n",
"X_pca = pca.fit_transform(X)\n",
"\n",
"# Inverse transform to get the reduced-dimension image\n",
"X_inverse = pca.inverse_transform(X_pca)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1TsSSFR3yi7x",
"outputId": "ea8a130e-06e6-4998-daaf-bb430a7d1e2e"
},
"execution_count": 52,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter the number of components you want to keep (in the range of 0 to 64): 0\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### **5. Displaying the reduced image**"
],
"metadata": {
"id": "MhJN70II2Tyb"
}
},
{
"cell_type": "code",
"source": [
"# Original image\n",
"original_image = X[random_image_index].reshape(8, 8)\n",
"\n",
"# Reduced-dimension image\n",
"reduced_image = X_inverse[random_image_index].reshape(8, 8)\n",
"\n",
"# Plot the original and reduced images\n",
"plt.figure(figsize=(8, 4))\n",
"plt.subplot(1, 2, 1)\n",
"plt.imshow(original_image, cmap='gray')\n",
"plt.title('Original Image')\n",
"plt.axis('off')\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.imshow(reduced_image, cmap='gray')\n",
"plt.title(f'Reduced to {n_components} Components')\n",
"plt.axis('off')\n",
"\n",
"plt.show()\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 341
},
"id": "UlbzCCVFynKk",
"outputId": "512b3526-2745-45f1-e67c-53c05aacec5c"
},
"execution_count": 53,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 800x400 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAn8AAAFECAYAAABWG1gIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh30lEQVR4nO3deXxNd/7H8XckkURiD0VoYt9LJbTWxNKHttQylj4sqQRF7Ua1nUfHWkNRIx1lEqWtwbQlNWhLV7FON1rLKFoqapna1RZb8v394XHPz3WDMOpEv6/n49HHo07Ovfdzb27OfeXcc0/8jDFGAAAAsEIetwcAAADA3UP8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/N3DxowZIz8/v9u67FtvvSU/Pz+lp6ff2aGukp6eLj8/P7311lu/2W0AyJ3uxjbmf+Xn56cxY8a4PQZw1xF/Lti2bZu6d++uiIgIBQUFqVSpUurWrZu2bdvm9miuWLVqlfz8/JSamur2KMDvmifIPP8FBAQoIiJCCQkJOnDggNvj5UoHDx7UmDFjtGnTpjt+3VlZWZo8ebLKli2r4OBgPfDAA3r77bdv6To2bdqk7t27q0yZMgoKClKRIkXUokULvfnmm8rMzLzjM9tm5syZv8sdGMTfXbZ48WLVqVNHn3/+uRITEzVz5kz16tVLaWlpqlOnjv71r3/l+Lr+/Oc/KyMj47bmiI+PV0ZGhiIjI2/r8gDuXePGjdO8efOUnJysxx57TPPnz1dsbKzOnz/v9mi5zsGDBzV27NjfJP5efPFFPf/883rkkUc0ffp03X///erataveeeedHF1+9uzZiomJUVpamrp166aZM2dq1KhRCgkJUa9evTRp0qQ7PrNtfq/xF+D2ADbZvXu34uPjVa5cOa1Zs0bFihVzvjZkyBA1btxY8fHx2rJli8qVK3fd6zl79qxCQ0MVEBCggIDb+xb6+/vL39//ti4L4N722GOPKSYmRpLUu3dvhYeHa9KkSVq2bJk6d+7s8nR2OHDggKZOnaoBAwbotddek3TlexEbG6sRI0aoU6dON9xGf/nll+rXr5/q16+v5cuXK3/+/M7Xhg4dqg0bNug///nPb34/cG9iz99dNGXKFJ07d06zZs3yCj9JCg8PV0pKis6ePavJkyc7yz3H9X3//ffq2rWrChcurEaNGnl97WoZGRkaPHiwwsPDlT9/frVp00YHDhzwObYlu+NxoqKi1Lp1a61bt0716tVTcHCwypUrp3/84x9et3H8+HE9++yzqlmzpsLCwlSgQAE99thj2rx58x16pP7/vv3www/q3r27ChYsqGLFimnkyJEyxmjfvn1q27atChQooBIlSmjq1Klel7948aJGjRql6OhoFSxYUKGhoWrcuLHS0tJ8buvYsWOKj49XgQIFVKhQIfXo0UObN2/O9njFHTt2qGPHjipSpIiCg4MVExOjZcuW3bH7DbihcePGkq78gnq1nD7ft23bpmbNmikkJESlS5fW+PHjlZWV5bPe9Y6xi4qKUkJCgteykydPatiwYYqKilJQUJBKly6tp556SkePHnXWuXDhgkaPHq0KFSooKChIZcqU0XPPPacLFy54XdeFCxc0bNgwFStWzNku7t+//6aPy6pVq1S3bl1JUmJiovN2+dXbhUWLFik6OlohISEKDw9X9+7dc/QW+tKlS3Xp0iX179/f6/F55plntH//fn3xxRc3vPzYsWPl5+enBQsWeIWfR0xMjNdjevbsWQ0fPtx5e7hy5cp65ZVXZIzxupyfn58GDhyoRYsWqVq1agoJCVH9+vW1detWSVJKSooqVKig4OBgxcXF+RzTGRcXpxo1amjjxo1q0KCBQkJCVLZsWSUnJ/vMePjwYfXq1Uv33XefgoODVatWLc2dO9drHc+x46+88opmzZql8uXLKygoSHXr1tU333zjc505ec56Xv/Wr1+vP/7xjypWrJhCQ0PVvn17HTlyxFkvKipK27Zt0+rVq53vfVxcnCTp0qVLGjt2rCpWrKjg4GAVLVpUjRo10qeffur7zcqF2PN3F73//vuKiopyNrTXatKkiaKiovThhx/6fK1Tp06qWLGiJkyY4PPDerWEhAQtXLhQ8fHxevjhh7V69Wq1atUqxzPu2rVLHTt2VK9evdSjRw+98cYbSkhIUHR0tKpXry5J+umnn7RkyRJ16tRJZcuW1aFDh5SSkqLY2Fh9//33KlWqVI5v72aefPJJVa1aVS+//LI+/PBDjR8/XkWKFFFKSoqaNWumSZMmacGCBXr22WdVt25dNWnSRJJ06tQpzZ49W126dNHTTz+t06dPa86cOWrZsqW+/vpr1a5dW9KVY26eeOIJff3113rmmWdUpUoVLV26VD169PCZZdu2bWrYsKEiIiL0wgsvKDQ0VAsXLlS7du303nvvqX379nfsfgN3k+cFvHDhws6ynD7ff/nlFzVt2lSXL1921ps1a5ZCQkJue54zZ86ocePG2r59u3r27Kk6dero6NGjWrZsmfbv36/w8HBlZWWpTZs2Wrdunfr06aOqVatq69atmjZtmn744QctWbLEub7evXtr/vz56tq1qxo0aKCVK1fmaLtYtWpVjRs3TqNGjVKfPn2cbXeDBg0kXYmIxMRE1a1bVxMnTtShQ4f06quvav369fruu+9UqFCh6173d999p9DQUFWtWtVreb169Zyve37Rv9a5c+f0+eefq0mTJrr//vtvej+MMWrTpo3S0tLUq1cv1a5dWx9//LFGjBihAwcOaNq0aV7rr127VsuWLdOAAQMkSRMnTlTr1q313HPPaebMmerfv79OnDihyZMnq2fPnlq5cqXX5U+cOKHHH39cnTt3VpcuXbRw4UI988wzyps3r3r27Cnpyo6KuLg47dq1SwMHDlTZsmW1aNEiJSQk6OTJkxoyZIjXdf7zn//U6dOn1bdvX/n5+Wny5Mn6wx/+oJ9++kmBgYGSbn0bPWjQIBUuXFijR49Wenq6kpKSNHDgQL377ruSpKSkJA0aNEhhYWF68cUXJUn33XefpCs7KCZOnKjevXurXr16OnXqlDZs2KBvv/1WjzzyyE2/J64zuCtOnjxpJJm2bdvecL02bdoYSebUqVPGGGNGjx5tJJkuXbr4rOv5msfGjRuNJDN06FCv9RISEowkM3r0aGfZm2++aSSZPXv2OMsiIyONJLNmzRpn2eHDh01QUJAZPny4s+z8+fMmMzPT6zb27NljgoKCzLhx47yWSTJvvvnmDe9zWlqakWQWLVrkc9/69OnjLLt8+bIpXbq08fPzMy+//LKz/MSJEyYkJMT06NHDa90LFy543c6JEyfMfffdZ3r27Okse++994wkk5SU5CzLzMw0zZo185m9efPmpmbNmub8+fPOsqysLNOgQQNTsWLFG95HIDfw/Nx/9tln5siRI2bfvn0mNTXVFCtWzAQFBZl9+/Y56+b0+T506FAjyXz11VfOssOHD5uCBQv6bGOu3Q55REZGev38jho1ykgyixcv9lk3KyvLGGPMvHnzTJ48eczatWu9vp6cnGwkmfXr1xtjjNm0aZORZPr37++1XteuXa87z9W++eabbLdjFy9eNMWLFzc1atQwGRkZzvIPPvjASDKjRo264fW2atXKlCtXzmf52bNnjSTzwgsvXPeymzdvNpLMkCFDbngbHkuWLDGSzPjx472Wd+zY0fj5+Zldu3Y5yySZoKAgr+9bSkqKkWRKlCjhvDYZY8yf/vQnn+9xbGyskWSmTp3qLLtw4YKpXbu2KV68uLl48aIxxpikpCQjycyfP99Z7+LFi6Z+/fomLCzMuR3P60jRokXN8ePHnXWXLl1qJJn333/fWZbT56zn56BFixbO88kYY4YNG2b8/f3NyZMnnWXVq1c3sbGxPo9prVq1TKtWrXyW3yt42/cuOX36tCRlu3v+ap6vnzp1ymt5v379bnobH330kSR5vY0gXfntJqeqVavmtWeyWLFiqly5sn766SdnWVBQkPLkufLUyczM1LFjxxQWFqbKlSvr22+/zfFt5UTv3r2d//f391dMTIyMMerVq5ezvFChQj4z+vv7K2/evJKu7N07fvy4Ll++rJiYGK8ZP/roIwUGBurpp592luXJk8f5jdfj+PHjWrlypTp37qzTp0/r6NGjOnr0qI4dO6aWLVvqxx9/5NOSuGe0aNFCxYoVU5kyZdSxY0eFhoZq2bJlKl26tKRbe74vX75cDz/8sLPHSrqy3ejWrdttz/fee++pVq1a2e5N9xzqsmjRIlWtWlVVqlRx5jt69KiaNWsmSc4hHsuXL5ckDR482Ot6hg4detvzSdKGDRt0+PBh9e/fX8HBwc7yVq1aqUqVKtm+g3O1jIwMBQUF+Sz3XNeNPszneX242euJx/Lly+Xv7+/zGAwfPlzGGK1YscJrefPmzRUVFeX8+6GHHpIkdejQwes2Pcuv3vZKUkBAgPr27ev8O2/evOrbt68OHz6sjRs3OjOVKFFCXbp0cdYLDAzU4MGDdebMGa1evdrrOp988kmvPdOe1ynPbd/ONrpPnz5eh041btxYmZmZ2rt3r89jeK1ChQpp27Zt+vHHH2+6bm7E2753iecHxhOB13O9SCxbtuxNb2Pv3r3KkyePz7oVKlTI8ZzZvYVQuHBhnThxwvl3VlaWXn31Vc2cOVN79uzxOp1A0aJFc3xbtzNPwYIFFRwcrPDwcJ/lx44d81o2d+5cTZ06VTt27NClS5ec5Vc/Pnv37lXJkiWVL18+r8te+5jt2rVLxhiNHDlSI0eOzHbWw4cPKyIiIud3DnDJjBkzVKlSJf3666964403tGbNGq8QuZXn+969e50IuFrlypVve77du3erQ4cON1znxx9/1Pbt232On756Pun/t4vly5e/Y/N5rvd611OlShWtW7fuhpcPCQnxOTZRkvOJ6xu9bV6gQAFJN389uXrWUqVK+byueN5yvjZ2stvuSlKZMmWyXX7164MklSpVSqGhoV7LKlWqJOnKIQYPP/yw9u7dq4oVKzo7Em51Jk8Iem77drbRN7vOGxk3bpzatm2rSpUqqUaNGnr00UcVHx+vBx544KaXzQ2Iv7ukYMGCKlmypLZs2XLD9bZs2aKIiAjnh9vjfzl+5lZc79Nl5qrjDCdMmKCRI0eqZ8+eeumll1SkSBHlyZNHQ4cOzfYg7zs9T05mnD9/vhISEtSuXTuNGDFCxYsXl7+/vyZOnOhzUHtOeO7Xs88+q5YtW2a7zq1ENuCmevXqOZ/2bdeunRo1aqSuXbtq586dCgsLu+vP99s5H11WVpZq1qypv/71r9l+/dpQyW1KliyptLQ0GWO89j7997//laQbHjtdoUIFBQQEOB/CuNOut43Nybb3t3Kz276d5+z/cn+aNGmi3bt3a+nSpfrkk080e/ZsTZs2TcnJyV7vWOVWxN9d1Lp1a73++utat25dtgfyrl27Vunp6V67y29FZGSksrKytGfPHlWsWNFZvmvXrtueOTupqalq2rSp5syZ47X85MmTPnvk3JKamqpy5cpp8eLFXhvW0aNHe60XGRmptLQ0nTt3zmvv37WPmefUO4GBgWrRosVvODlwd3l+KWratKlee+01vfDCC7f0fI+MjMz2ra+dO3f6LCtcuLBOnjzptezixYtO8HiUL1/+pqcpKV++vDZv3qzmzZvf8C8debaLu3fv9tpLl9182bnedXvOkbpz507nrearr/tm51CtXbu2Zs+ere3bt6tatWrO8q+++sr5+vXky5dPzZo108qVK7Vv376bhm5kZKQ+++wznT592mvv344dO7zuy51y8OBB55RkHj/88IMkOW8nR0ZGasuWLcrKyvLa+3e7M/1W2+gbPbeKFCmixMREJSYm6syZM2rSpInGjBlzT8Qfx/zdRSNGjFBISIj69u3r8xbl8ePH1a9fP+XLl08jRoy4rev3/LYzc+ZMr+XTp0+/vYGvw9/f3+c3o0WLFuWqY948v9FdPedXX33lc/qEli1b6tKlS3r99dedZVlZWZoxY4bXesWLF1dcXJxSUlJ8XqgkeZ0eALjXxMXFqV69ekpKStL58+dv6fn++OOP68svv9TXX3/t9fUFCxb4XK58+fJas2aN17JZs2b57Pnr0KGDNm/enO1J7z0/0507d9aBAwe8fnY9MjIydPbsWUlXzmkoSX/729+81klKSvK5XHY8AXNttMbExKh48eJKTk72evt2xYoV2r59+00/Tdy2bVsFBgZ6ba+NMUpOTlZERITzieLrGT16tIwxio+P15kzZ3y+vnHjRue0KY8//rgyMzOd8wl6TJs2TX5+fs5jdKdcvnxZKSkpzr8vXryolJQUFStWTNHR0c5Mv/zyi/PJWs/lpk+frrCwMMXGxt7Sbf5W2+jQ0FCf770kn9fwsLAwVahQIdu38nMj9vzdRRUrVtTcuXPVrVs31axZU7169VLZsmWVnp6uOXPm6OjRo3r77bd9jk3JqejoaHXo0EFJSUk6duyYc6oXz29ct/t3gK/VunVrjRs3TomJiWrQoIG2bt2qBQsW3PDE1Hdb69attXjxYrVv316tWrXSnj17lJycrGrVqnltKNu1a6d69epp+PDh2rVrl6pUqaJly5bp+PHjkrwfsxkzZqhRo0aqWbOmnn76aZUrV06HDh3SF198of3799/R8xwCd5vnxMJvvfWW+vXrl+Pn+3PPPad58+bp0Ucf1ZAhQ5xTvXj27Fytd+/e6tevnzp06KBHHnlEmzdv1scff+zzjsGIESOUmpqqTp06qWfPnoqOjtbx48e1bNkyJScnq1atWoqPj9fChQvVr18/paWlqWHDhsrMzNSOHTu0cOFCffzxx4qJiVHt2rXVpUsXzZw5U7/++qsaNGigzz//PMfviJQvX16FChVScnKy8ufPr9DQUD300EMqW7asJk2apMTERMXGxqpLly7OqV6ioqI0bNiwG15v6dKlNXToUE2ZMkWXLl1S3bp1tWTJEq1du1YLFiy46Un4GzRooBkzZqh///6qUqWK4uPjVbFiRZ0+fVqrVq3SsmXLNH78eEnSE088oaZNm+rFF19Uenq6atWqpU8++URLly7V0KFDb/s153pKlSqlSZMmKT09XZUqVdK7776rTZs2adasWc5pWfr06aOUlBQlJCRo48aNioqKUmpqqtavX6+kpKQcf5jlar/FNjo6Olp///vfNX78eFWoUEHFixdXs2bNVK1aNcXFxSk6OlpFihTRhg0blJqaqoEDB97ybbji7n/AGFu2bDFdunQxJUuWNIGBgaZEiRKmS5cuZuvWrT7rek55cuTIket+7Wpnz541AwYMMEWKFDFhYWGmXbt2ZufOnUaS1+lRrneql+w+uh4bG+v1Uffz58+b4cOHm5IlS5qQkBDTsGFD88UXX/isdydO9XLt/e7Ro4cJDQ3Ndsbq1as7/87KyjITJkwwkZGRJigoyDz44IPmgw8+MD169DCRkZFelz1y5Ijp2rWryZ8/vylYsKBJSEgw69evN5LMO++847Xu7t27zVNPPWVKlChhAgMDTUREhGndurVJTU294X0EcgPPz/0333zj87XMzExTvnx5U758eXP58mVjTM6f71u2bDGxsbEmODjYREREmJdeesnMmTPHZxuTmZlpnn/+eRMeHm7y5ctnWrZsaXbt2uVzqhdjjDl27JgZOHCgiYiIMHnz5jWlS5c2PXr0MEePHnXWuXjxopk0aZKpXr26CQoKMoULFzbR0dFm7Nix5tdff3XWy8jIMIMHDzZFixY1oaGh5oknnjD79u3L0alejLlyWpFq1aqZgIAAn23au+++ax588EETFBRkihQpYrp162b2799/0+v0PB6e7VTevHlN9erVvU59khMbN240Xbt2NaVKlTKBgYGmcOHCpnnz5mbu3Llep+Q6ffq0GTZsmLNexYoVzZQpU7xOdWLMlVO9DBgwwGuZZ1s+ZcoUr+XZbbs92+INGzaY+vXrm+DgYBMZGWlee+01n9kPHTpkEhMTTXh4uMmbN6+pWbOmz+vF9W7bM+u137+cPGev93PguT9paWnOsl9++cW0atXK5M+f30hyXuPGjx9v6tWrZwoVKmRCQkJMlSpVzF/+8hfnVDa5nZ8xd+FITbhq06ZNevDBBzV//vz/6fQLNlmyZInat2+vdevWqWHDhm6PAwD3hLi4OB09epQ/LZfLcczf70x254ZKSkpSnjx5nL9+AW/XPmaZmZmaPn26ChQooDp16rg0FQAAvw2O+fudmTx5sjZu3KimTZsqICBAK1as0IoVK9SnT59cf+oDtwwaNEgZGRmqX7++Lly4oMWLF+vf//63JkyYcNdOsQMAwN1C/P3ONGjQQJ9++qleeuklnTlzRvfff7/GjBnj/F1C+GrWrJmmTp2qDz74QOfPn1eFChU0ffr0e+fAXQAAbgHH/AEAAFiEY/4AAAAsQvwBAABYhPgDAACwSI4/8HGn/jrE782N/v6iG3L6J4vuhlWrVrk9gmPJkiVuj+DYtGmT2yPkWr/3Q5Bz03Y0b968bo/g6Nevn9sjeHnllVfcHiFXuvZvo7tp3rx5bo/g5eDBg26P4Lj2zyVmhz1/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACwS4PYA97q4uDi3R/ASGxvr9giOQoUKuT2Co127dm6P4Mhtz5mTJ0+6PQJcUKFCBbdHcAwaNMjtEbz4+/u7PYJj165dbo/giImJcXsEx+LFi90e4Z7Gnj8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFglwe4B7XUJCgtsjeBk7dqzbIzjGjBnj9giOpKQkt0dw1K5d2+0RvKxatcrtEeCC/Pnzuz2C49y5c26P4GXmzJluj+Dw9/d3ewRHwYIF3R7BkZmZ6fYIXowxbo9wS9jzBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFAtwe4F5Xq1Ytt0fw0q5dO7dHyJU2bdrk9giOqKgot0cAlJmZ6fYIjhMnTrg9gpfKlSu7PYKjRIkSbo/g2Lhxo9sjOMLCwtwewYsxxu0Rbgl7/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYJMDtAW5HXFyc2yM4Vq9e7fYIXtLT090eIVfKTc+ZpKQkt0cAdPnyZbdHcPz8889uj+Dl/vvvd3sER3BwsNsjOEqVKuX2CI6wsDC3R7insecPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEUC3B7gdpw8edLtEXCPqV27ttsjOHj+IjfITc/DEydOuD2Cl4yMDLdHcPz8889uj+AICwtzewRH/vz53R7hnsaePwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWCXB7gNuxadMmt0fIteLi4twewTFmzBi3R3DkpudMenq62yMAOn78uNsjOPLnz+/2CF5q1Kjh9giOzMxMt0dwnDp1yu0RHIGBgW6P4CUg4N7KKfb8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGCRALcHuNdNmzbN7RG8pKWluT2CY/PmzW6P4BgzZozbIwC5SkZGhtsjOLZv3+72CF4SExPdHsFx6dIlt0dwzJgxw+0RHLt373Z7BC/+/v5uj3BL2PMHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGAR4g8AAMAixB8AAIBFiD8AAACLEH8AAAAWIf4AAAAsQvwBAABYhPgDAACwCPEHAABgEeIPAADAIsQfAACARYg/AAAAixB/AAAAFiH+AAAALEL8AQAAWIT4AwAAsAjxBwAAYBHiDwAAwCJ+xhjj9hAAAAC4O9jzBwAAYBHiDwAAwCLEHwAAgEWIPwAAAIsQfwAAABYh/gAAACxC/AEAAFiE+AMAALAI8QcAAGCR/wP8NSzEJPYqIgAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
}
]
}