Skip to content

TensorOpsAI/LLMstudio

Repository files navigation

LLMstudio by TensorOps

Prompt Engineering at your fingertips

LLMstudio logo

🌟 Features

LLMstudio UI

  • LLM Proxy Access: Seamless access to all the latest LLMs by OpenAI, Anthropic, Google.
  • Custom and Local LLM Support: Use custom or local open-source LLMs through Ollama.
  • Prompt Playground UI: A user-friendly interface for engineering and fine-tuning your prompts.
  • Python SDK: Easily integrate LLMstudio into your existing workflows.
  • Monitoring and Logging: Keep track of your usage and performance for all requests.
  • LangChain Integration: LLMstudio integrates with your already existing LangChain projects.
  • Batch Calling: Send multiple requests at once for improved efficiency.
  • Smart Routing and Fallback: Ensure 24/7 availability by routing your requests to trusted LLMs.
  • Type Casting (soon): Convert data types as needed for your specific use case.

🚀 Quickstart

Don't forget to check out https://docs.llmstudio.ai page.

Installation

Install the latest version of LLMstudio using pip. We suggest that you create and activate a new environment using conda

For full version:

pip install 'llmstudio[proxy,tracker]'

For lightweight (core) version:

pip install llmstudio

Create a .env file at the same path you'll run LLMstudio

OPENAI_API_KEY="sk-api_key"
ANTHROPIC_API_KEY="sk-api_key"
VERTEXAI_KEY="sk-api-key"

Now you should be able to run LLMstudio using the following command.

llmstudio server --proxy --tracker

When the --proxy flag is set, you'll be able to access the Swagger at http://0.0.0.0:50001/docs (default port)

When the --tracker flag is set, you'll be able to access the Swagger at http://0.0.0.0:50002/docs (default port)

📖 Documentation

👨‍💻 Contributing

  • Head on to our Contribution Guide to see how you can help LLMstudio.
  • Join our Discord to talk with other LLMstudio enthusiasts.

Training

Banner


Thank you for choosing LLMstudio. Your journey to perfecting AI interactions starts here.