Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove explicit dependency on SciMLBase #256

Merged
merged 4 commits into from
Mar 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions test/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,28 +2,24 @@
ChunkSplitters = "ae650224-84b6-46f8-82ea-d812ca08434e"
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
GaussianRandomFields = "e4b2fa32-6e09-5554-b718-106ed5adafe9"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
PDMats = "90014a1f-27ba-587c-ab20-58faa44d9150"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
YAML = "ddb6d928-2868-570f-bddf-ab3f9cf99eb6"

[compat]
Distributions = "0.22, 0.23, 0.24, 0.25"
FillArrays = "0.13"
GaussianRandomFields = "2.2.1"
HDF5 = "0.14, 0.15, 0.16"
MPI = "0.20.8"
OrdinaryDiffEq = "6.40"
SciMLBase = "1.81"
PDMats = "0.11"
StableRNGs = "1"
YAML = "0.4"
Expand Down
9 changes: 4 additions & 5 deletions test/models/lineargaussian.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
module LinearGaussian

using Distributions
using FillArrays
using HDF5
using Random
using PDMats
Expand Down Expand Up @@ -49,7 +48,7 @@ function diagonal_linear_gaussian_model_parameters(
:observation_matrix => ScalMat(
state_dimension, observation_coefficient
),
:initial_state_mean => Zeros(state_dimension),
:initial_state_mean => zeros(state_dimension),
:initial_state_covar => ScalMat(
state_dimension, initial_state_std^2
),
Expand Down Expand Up @@ -81,7 +80,7 @@ function stochastically_driven_dsho_model_parameters(
]'
],
:observation_matrix => ScalMat(2, 1.),
:initial_state_mean => Zeros(2),
:initial_state_mean => zeros(2),
:initial_state_covar => ScalMat(2, 1.),
:state_noise_covar => PDMat(
Q * exp(-ω * δ / Q) * [
Expand Down Expand Up @@ -120,8 +119,8 @@ function init(parameters_dict::Dict, n_tasks::Int=1)
MvNormal(m, c)
for (m, c) in (
(parameters.initial_state_mean, parameters.initial_state_covar),
(Zeros(state_dimension), parameters.state_noise_covar),
(Zeros(observation_dimension), parameters.observation_noise_covar),
(zeros(state_dimension), parameters.state_noise_covar),
(zeros(observation_dimension), parameters.observation_noise_covar),
)
)...
)
Expand Down
14 changes: 6 additions & 8 deletions test/models/lorenz63.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,10 @@ module Lorenz63

using Base.Threads
using Distributions
using FillArrays
using HDF5
using Random
using PDMats
using OrdinaryDiffEq
using SciMLBase
using ParticleDA

Base.@kwdef struct Lorenz63ModelParameters{S <: Real, T <: Real}
Expand All @@ -27,9 +25,9 @@ function get_params(
return P(; (; (Symbol(k) => v for (k, v) in model_params_dict)...)...)
end

struct Lorenz63Model{S <: Real, T <: Real}
struct Lorenz63Model{S <: Real, T <: Real, I}
parameters::Lorenz63ModelParameters{S, T}
integrators::Vector{<:SciMLBase.AbstractODEIntegrator}
integrators::Vector{I}
matt-graham marked this conversation as resolved.
Show resolved Hide resolved
initial_state_distribution::MvNormal{S}
state_noise_distribution::MvNormal{S}
observation_noise_distribution::MvNormal{T}
Expand Down Expand Up @@ -57,7 +55,7 @@ function init(
Tsit5();
save_everystep=false
)
for u in eachcol(Matrix{S}(undef, 3, n_tasks))
for u in eachcol(zeros(S, 3, n_tasks))
]
state_dimension = 3
observation_dimension = length(parameters.observed_indices)
Expand All @@ -67,9 +65,9 @@ function init(
(
MvNormal(m, isa(s, Vector) ? PDiagMat(s.^2) : ScalMat(length(m), s.^2))
for (m, s) in (
(Ones{S}(state_dimension), parameters.initial_state_std),
(Zeros{S}(state_dimension), parameters.state_noise_std),
(Zeros{T}(observation_dimension), parameters.observation_noise_std),
(ones(S, state_dimension), parameters.initial_state_std),
(zeros(S, state_dimension), parameters.state_noise_std),
(zeros(T, observation_dimension), parameters.observation_noise_std),
)
)...
)
Expand Down
Loading