Skip to content

Commit

Permalink
add yolov10
Browse files Browse the repository at this point in the history
  • Loading branch information
jameslahm committed May 23, 2024
1 parent 5be2ffb commit e9c11cc
Show file tree
Hide file tree
Showing 30 changed files with 4,946 additions and 596 deletions.
338 changes: 65 additions & 273 deletions README.md

Large diffs are not rendered by default.

297 changes: 0 additions & 297 deletions README.zh-CN.md

This file was deleted.

2,140 changes: 2,140 additions & 0 deletions figures/latency.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2,108 changes: 2,108 additions & 0 deletions figures/params.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
9 changes: 9 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
torch
torchvision
onnx
onnxruntime
pycocotools
PyYAML
scipy
onnxsim
onnxruntime-gpu
3 changes: 2 additions & 1 deletion ultralytics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
__version__ = "8.1.34"

from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld, YOLOv10
from ultralytics.models.fastsam import FastSAM
from ultralytics.models.nas import NAS
from ultralytics.utils import ASSETS, SETTINGS as settings
Expand All @@ -23,4 +23,5 @@
"download",
"settings",
"Explorer",
"YOLOv10"
)
4 changes: 4 additions & 0 deletions ultralytics/cfg/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -549,6 +549,10 @@ def entrypoint(debug=""):
from ultralytics import SAM

model = SAM(model)
elif "yolov10" in stem:
from ultralytics import YOLOv10

model = YOLOv10(model)
else:
from ultralytics import YOLO

Expand Down
40 changes: 40 additions & 0 deletions ultralytics/cfg/models/v10/yolov10b.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
b: [0.67, 1.00, 512]

# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2fCIB, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2fCIB, [512, True]] # 13

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)

- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)

- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
40 changes: 40 additions & 0 deletions ultralytics/cfg/models/v10/yolov10l.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs

# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2fCIB, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2fCIB, [512, True]] # 13

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)

- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)

- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
43 changes: 43 additions & 0 deletions ultralytics/cfg/models/v10/yolov10m.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs

# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2fCIB, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)

- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)

- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
40 changes: 40 additions & 0 deletions ultralytics/cfg/models/v10/yolov10n.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]

# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)

- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
39 changes: 39 additions & 0 deletions ultralytics/cfg/models/v10/yolov10s.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
s: [0.33, 0.50, 1024]

backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2fCIB, [1024, True, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)

- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
40 changes: 40 additions & 0 deletions ultralytics/cfg/models/v10/yolov10x.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
x: [1.00, 1.25, 512]

# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2fCIB, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2fCIB, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2fCIB, [512, True]] # 13

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)

- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)

- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
5 changes: 4 additions & 1 deletion ultralytics/engine/exporter.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@
from ultralytics.data.dataset import YOLODataset
from ultralytics.data.utils import check_det_dataset
from ultralytics.nn.autobackend import check_class_names, default_class_names
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder, v10Detect
from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
from ultralytics.utils import (
ARM64,
Expand Down Expand Up @@ -229,6 +229,9 @@ def __call__(self, model=None):
m.dynamic = self.args.dynamic
m.export = True
m.format = self.args.format
if isinstance(m, v10Detect):
m.max_det = self.args.max_det

elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)):
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
m.forward = m.forward_split
Expand Down
3 changes: 2 additions & 1 deletion ultralytics/engine/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -425,7 +425,8 @@ def _do_train(self, world_size=1):
self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"])

# Validation
if self.args.val or final_epoch or self.stopper.possible_stop or self.stop:
if (self.args.val and (((epoch+1) % 10 == 0) or (self.epochs - epoch) <= 10)) \
or final_epoch or self.stopper.possible_stop or self.stop:
self.metrics, self.fitness = self.validate()
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch
Expand Down
8 changes: 7 additions & 1 deletion ultralytics/engine/validator.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,10 +196,16 @@ def __call__(self, trainer=None, model=None):
self.check_stats(stats)
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt)))
self.finalize_metrics()
self.print_results()
# self.print_results()
self.run_callbacks("on_val_end")
if self.training:
model.float()
assert(self.args.save_json and self.jdict)
with open(str(self.save_dir / "predictions.json"), "w") as f:
LOGGER.info(f"Saving {f.name}...")
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
stats['fitness'] = stats['metrics/mAP50-95(B)']
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
else:
Expand Down
3 changes: 2 additions & 1 deletion ultralytics/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,6 @@
from .rtdetr import RTDETR
from .sam import SAM
from .yolo import YOLO, YOLOWorld
from .yolov10 import YOLOv10

__all__ = "YOLO", "RTDETR", "SAM", "YOLOWorld" # allow simpler import
__all__ = "YOLO", "RTDETR", "SAM", "YOLOWorld", "YOLOv10" # allow simpler import
5 changes: 5 additions & 0 deletions ultralytics/models/yolov10/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
from .model import YOLOv10
from .predict import YOLOv10DetectionPredictor
from .val import YOLOv10DetectionValidator

__all__ = "YOLOv10DetectionPredictor", "YOLOv10DetectionValidator", "YOLOv10"
18 changes: 18 additions & 0 deletions ultralytics/models/yolov10/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
from ..yolo import YOLO
from ultralytics.nn.tasks import YOLOv10DetectionModel
from .val import YOLOv10DetectionValidator
from .predict import YOLOv10DetectionPredictor
from .train import YOLOv10DetectionTrainer

class YOLOv10(YOLO):
@property
def task_map(self):
"""Map head to model, trainer, validator, and predictor classes."""
return {
"detect": {
"model": YOLOv10DetectionModel,
"trainer": YOLOv10DetectionTrainer,
"validator": YOLOv10DetectionValidator,
"predictor": YOLOv10DetectionPredictor,
},
}
Loading

0 comments on commit e9c11cc

Please sign in to comment.