To upload CSV files using Python in the paintings database and answer the queries of the Paintings Dataset case study using SQL
Data Set Paintings: https://data.world/atlas-query/paintings
- artist.csv ( 9 columns, 421 rows )
- canvas_size.csv ( 4 columns, 200 rows )
- image_link.csv ( 4 columns, 14775 rows )
- museum.csv ( 9 columns, 57 rows )
- museum_hours.csv ( 4 columns, 350 rows )
- product_size.csv ( 4 columns, 109660 rows )
- subject.csv ( 2 columns, 6712 rows )
- work.csv ( 5 columns, 14716 rows )
- Created connection to database paintings using SQLAlchemy module
- Importing CSV files in the folder to Python using Pandas and OS module
- Converting Data into tables in the database using Pandas
Questions were solved using complex SQL queries like
- CTEs
- Created User- Defined Function to extract time from String which was not available in Convert or Cast
- SubQueries
- Window Function like Row_number() and Rank() using Partition by or Order by
- Joins
- Date and Time Function
- Pattern Analysis function - PATINDEX
- String Function - Substring, Charindex and String_agg