-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
638 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import numpy as np | ||
import tensorflow as tf | ||
from PIL import Image | ||
import tqdm | ||
import os | ||
import matplotlib.pyplot as plt | ||
import sys | ||
sys.path.append('..') | ||
from model import Model | ||
|
||
IMAGE_SIZE = 128 | ||
LOCAL_SIZE = 64 | ||
HOLE_MIN = 24 | ||
HOLE_MAX = 48 | ||
BATCH_SIZE = 16 | ||
|
||
image_path = './lfw.npy' | ||
|
||
def test(): | ||
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) | ||
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1]) | ||
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3]) | ||
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) | ||
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3]) | ||
is_training = tf.placeholder(tf.bool, []) | ||
|
||
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE) | ||
sess = tf.Session() | ||
init_op = tf.global_variables_initializer() | ||
sess.run(init_op) | ||
|
||
saver = tf.train.Saver() | ||
saver.restore(sess, './models/latest') | ||
|
||
x_test = np.load(test_npy) | ||
np.random.shuffle(x_test) | ||
x_test = np.array([a / 127.5 - 1 for a in x_test]) | ||
|
||
step_num = int(len(x_test) / BATCH_SIZE) | ||
|
||
cnt = 0 | ||
for i in tqdm.tqdm(range(step_num)): | ||
x_batch = x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE] | ||
_, mask_batch = get_points() | ||
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False}) | ||
for i in range(BATCH_SIZE): | ||
cnt += 1 | ||
raw = x_batch[i] | ||
raw = np.array((raw + 1) * 127.5, dtype=np.uint8) | ||
masked = raw * (1 - mask_batch[i]) + np.ones_like(raw) * mask_batch[i] * 255 | ||
img = completion[i] | ||
img = np.array((img + 1) * 127.5, dtype=np.uint8) | ||
dst = './output/{}.jpg'.format("{0:06d}".format(cnt)) | ||
output_image([['Input', masked], ['Output', img], ['Ground Truth', raw]], dst) | ||
|
||
|
||
def get_points(): | ||
points = [] | ||
mask = [] | ||
for i in range(BATCH_SIZE): | ||
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2) | ||
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE | ||
points.append([x1, y1, x2, y2]) | ||
|
||
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2) | ||
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w) | ||
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h) | ||
p2 = p1 + w | ||
q2 = q1 + h | ||
|
||
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8) | ||
m[q1:q2 + 1, p1:p2 + 1] = 1 | ||
mask.append(m) | ||
|
||
return np.array(points), np.array(mask) | ||
|
||
|
||
def output_image(images, dst): | ||
fig = plt.figure() | ||
for i, image in enumerate(images): | ||
text, img = image | ||
fig.add_subplot(1, 3, i + 1) | ||
plt.imshow(img) | ||
plt.tick_params(labelbottom='off') | ||
plt.tick_params(labelleft='off') | ||
plt.gca().get_xaxis().set_ticks_position('none') | ||
plt.gca().get_yaxis().set_ticks_position('none') | ||
plt.xlabel(text) | ||
plt.savefig(dst) | ||
plt.close() | ||
|
||
|
||
if __name__ == '__main__': | ||
test() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import tensorflow as tf | ||
|
||
def conv_layer(x, filter_shape, stride): | ||
filters = tf.get_variable( | ||
name='weight', | ||
shape=filter_shape, | ||
dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer(), | ||
trainable=True) | ||
return tf.nn.conv2d(x, filters, [1, stride, stride, 1], padding='SAME') | ||
|
||
|
||
def dilated_conv_layer(x, filter_shape, dilation): | ||
filters = tf.get_variable( | ||
name='weight', | ||
shape=filter_shape, | ||
dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer(), | ||
trainable=True) | ||
return tf.nn.atrous_conv2d(x, filters, dilation, padding='SAME') | ||
|
||
|
||
def deconv_layer(x, filter_shape, output_shape, stride): | ||
filters = tf.get_variable( | ||
name='weight', | ||
shape=filter_shape, | ||
dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer(), | ||
trainable=True) | ||
return tf.nn.conv2d_transpose(x, filters, output_shape, [1, stride, stride, 1]) | ||
|
||
|
||
def batch_normalize(x, is_training, decay=0.99, epsilon=0.001): | ||
def bn_train(): | ||
batch_mean, batch_var = tf.nn.moments(x, axes=[0, 1, 2]) | ||
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) | ||
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) | ||
with tf.control_dependencies([train_mean, train_var]): | ||
return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon) | ||
|
||
def bn_inference(): | ||
return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon) | ||
|
||
dim = x.get_shape().as_list()[-1] | ||
beta = tf.get_variable( | ||
name='beta', | ||
shape=[dim], | ||
dtype=tf.float32, | ||
initializer=tf.truncated_normal_initializer(stddev=0.0), | ||
trainable=True) | ||
scale = tf.get_variable( | ||
name='scale', | ||
shape=[dim], | ||
dtype=tf.float32, | ||
initializer=tf.truncated_normal_initializer(stddev=0.1), | ||
trainable=True) | ||
pop_mean = tf.get_variable( | ||
name='pop_mean', | ||
shape=[dim], | ||
dtype=tf.float32, | ||
initializer=tf.constant_initializer(0.0), | ||
trainable=False) | ||
pop_var = tf.get_variable( | ||
name='pop_var', | ||
shape=[dim], | ||
dtype=tf.float32, | ||
initializer=tf.constant_initializer(1.0), | ||
trainable=False) | ||
|
||
return tf.cond(is_training, bn_train, bn_inference) | ||
|
||
|
||
def flatten_layer(x): | ||
input_shape = x.get_shape().as_list() | ||
dim = input_shape[1] * input_shape[2] * input_shape[3] | ||
transposed = tf.transpose(x, (0, 3, 1, 2)) | ||
return tf.reshape(transposed, [-1, dim]) | ||
|
||
|
||
def full_connection_layer(x, out_dim): | ||
in_dim = x.get_shape().as_list()[-1] | ||
W = tf.get_variable( | ||
name='weight', | ||
shape=[in_dim, out_dim], | ||
dtype=tf.float32, | ||
initializer=tf.truncated_normal_initializer(stddev=0.1), | ||
trainable=True) | ||
b = tf.get_variable( | ||
name='bias', | ||
shape=[out_dim], | ||
dtype=tf.float32, | ||
initializer=tf.constant_initializer(0.0), | ||
trainable=True) | ||
return tf.add(tf.matmul(x, W), b) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
import os | ||
import numpy as np | ||
|
||
def load(dir_='./training_data/npy'): | ||
x_train = np.load(os.path.join(dir_, 'x_train.npy')) | ||
x_test = np.load(os.path.join(dir_, 'x_test.npy')) | ||
return x_train, x_test | ||
|
||
|
||
if __name__ == '__main__': | ||
x_train, x_test = load() | ||
print(x_train.shape) | ||
print(x_test.shape) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
from layer import * | ||
|
||
class Model: | ||
def __init__(self, x, mask, local_x, global_completion, local_completion, is_training, batch_size): | ||
self.batch_size = batch_size | ||
self.imitation = self.generator(x * (1 - mask), is_training) | ||
self.completion = self.imitation * mask + x * (1 - mask) | ||
self.real = self.discriminator(x, local_x, reuse=False) | ||
self.fake = self.discriminator(global_completion, local_completion, reuse=True) | ||
self.g_loss = self.calc_g_loss(x, self.completion) | ||
self.d_loss = self.calc_d_loss(self.real, self.fake) | ||
self.g_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator') | ||
self.d_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') | ||
|
||
|
||
def generator(self, x, is_training): | ||
with tf.variable_scope('generator'): | ||
with tf.variable_scope('conv1'): | ||
x = conv_layer(x, [5, 5, 3, 64], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv2'): | ||
x = conv_layer(x, [3, 3, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv3'): | ||
x = conv_layer(x, [3, 3, 128, 128], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv4'): | ||
x = conv_layer(x, [3, 3, 128, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv5'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv6'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated1'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated2'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 4) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated3'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 8) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated4'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 16) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv7'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv8'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('deconv1'): | ||
x = deconv_layer(x, [4, 4, 128, 256], [self.batch_size, 64, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv9'): | ||
x = conv_layer(x, [3, 3, 128, 128], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('deconv2'): | ||
x = deconv_layer(x, [4, 4, 64, 128], [self.batch_size, 128, 128, 64], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv10'): | ||
x = conv_layer(x, [3, 3, 64, 32], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv11'): | ||
x = conv_layer(x, [3, 3, 32, 3], 1) | ||
x = tf.nn.tanh(x) | ||
|
||
return x | ||
|
||
|
||
def discriminator(self, global_x, local_x, reuse): | ||
def global_discriminator(x): | ||
is_training = tf.constant(True) | ||
with tf.variable_scope('global'): | ||
with tf.variable_scope('conv1'): | ||
x = conv_layer(x, [5, 5, 3, 64], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv2'): | ||
x = conv_layer(x, [5, 5, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv3'): | ||
x = conv_layer(x, [5, 5, 128, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv4'): | ||
x = conv_layer(x, [5, 5, 256, 512], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv5'): | ||
x = conv_layer(x, [5, 5, 512, 512], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('fc'): | ||
x = flatten_layer(x) | ||
x = full_connection_layer(x, 1024) | ||
return x | ||
|
||
def local_discriminator(x): | ||
is_training = tf.constant(True) | ||
with tf.variable_scope('local'): | ||
with tf.variable_scope('conv1'): | ||
x = conv_layer(x, [5, 5, 3, 64], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv2'): | ||
x = conv_layer(x, [5, 5, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv3'): | ||
x = conv_layer(x, [5, 5, 128, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv4'): | ||
x = conv_layer(x, [5, 5, 256, 512], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('fc'): | ||
x = flatten_layer(x) | ||
x = full_connection_layer(x, 1024) | ||
return x | ||
|
||
with tf.variable_scope('discriminator', reuse=reuse): | ||
global_output = global_discriminator(global_x) | ||
local_output = local_discriminator(local_x) | ||
with tf.variable_scope('concatenation'): | ||
output = tf.concat((global_output, local_output), 1) | ||
output = full_connection_layer(output, 1) | ||
|
||
return output | ||
|
||
|
||
def calc_g_loss(self, x, completion): | ||
loss = tf.nn.l2_loss(x - completion) | ||
return tf.reduce_mean(loss) | ||
|
||
|
||
def calc_d_loss(self, real, fake): | ||
alpha = 4e-4 | ||
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real, labels=tf.ones_like(real))) | ||
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake, labels=tf.zeros_like(fake))) | ||
return tf.add(d_loss_real, d_loss_fake) * alpha | ||
|
Empty file.
Oops, something went wrong.