-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
54760f8
commit 05d81ea
Showing
2 changed files
with
339 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
from layer import * | ||
|
||
class Model: | ||
def __init__(self, x, mosaic, mask, local_x, global_completion, local_completion, is_training, batch_size): | ||
self.batch_size = batch_size | ||
self.merged = x * (1 - mask) + mosaic * (mask) | ||
self.imitation = self.generator(self.merged, is_training) | ||
self.completion = self.imitation * mask + x * (1 - mask) | ||
self.real = self.discriminator(x, local_x, reuse=False) | ||
self.fake = self.discriminator(global_completion, local_completion, reuse=True) | ||
self.g_loss = self.calc_g_loss(x, self.completion) | ||
self.d_loss = self.calc_d_loss(self.real, self.fake) | ||
self.g_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator') | ||
self.d_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') | ||
|
||
|
||
def generator(self, x, is_training): | ||
with tf.variable_scope('generator'): | ||
with tf.variable_scope('conv1'): | ||
x = conv_layer(x, [5, 5, 3, 64], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv2'): | ||
x = conv_layer(x, [3, 3, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv3'): | ||
x = conv_layer(x, [3, 3, 128, 128], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv4'): | ||
x = conv_layer(x, [3, 3, 128, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv5'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv6'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated1'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated2'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 4) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated3'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 8) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('dilated4'): | ||
x = dilated_conv_layer(x, [3, 3, 256, 256], 16) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv7'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv8'): | ||
x = conv_layer(x, [3, 3, 256, 256], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('deconv1'): | ||
x = deconv_layer(x, [4, 4, 128, 256], [self.batch_size, 64, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv9'): | ||
x = conv_layer(x, [3, 3, 128, 128], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('deconv2'): | ||
x = deconv_layer(x, [4, 4, 64, 128], [self.batch_size, 128, 128, 64], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv10'): | ||
x = conv_layer(x, [3, 3, 64, 32], 1) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv11'): | ||
x = conv_layer(x, [3, 3, 32, 3], 1) | ||
x = tf.nn.tanh(x) | ||
|
||
return x | ||
|
||
|
||
def discriminator(self, global_x, local_x, reuse): | ||
def global_discriminator(x): | ||
is_training = tf.constant(True) | ||
with tf.variable_scope('global'): | ||
with tf.variable_scope('conv1'): | ||
x = conv_layer(x, [5, 5, 3, 64], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv2'): | ||
x = conv_layer(x, [5, 5, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv3'): | ||
x = conv_layer(x, [5, 5, 128, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv4'): | ||
x = conv_layer(x, [5, 5, 256, 512], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv5'): | ||
x = conv_layer(x, [5, 5, 512, 512], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('fc'): | ||
x = flatten_layer(x) | ||
x = full_connection_layer(x, 1024) | ||
return x | ||
|
||
def local_discriminator(x): | ||
is_training = tf.constant(True) | ||
with tf.variable_scope('local'): | ||
with tf.variable_scope('conv1'): | ||
x = conv_layer(x, [5, 5, 3, 64], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv2'): | ||
x = conv_layer(x, [5, 5, 64, 128], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv3'): | ||
x = conv_layer(x, [5, 5, 128, 256], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('conv4'): | ||
x = conv_layer(x, [5, 5, 256, 512], 2) | ||
x = batch_normalize(x, is_training) | ||
x = tf.nn.relu(x) | ||
with tf.variable_scope('fc'): | ||
x = flatten_layer(x) | ||
x = full_connection_layer(x, 1024) | ||
return x | ||
|
||
with tf.variable_scope('discriminator', reuse=reuse): | ||
global_output = global_discriminator(global_x) | ||
local_output = local_discriminator(local_x) | ||
with tf.variable_scope('concatenation'): | ||
output = tf.concat((global_output, local_output), 1) | ||
output = full_connection_layer(output, 1) | ||
|
||
return output | ||
|
||
|
||
def calc_g_loss(self, x, completion): | ||
loss = tf.nn.l2_loss(x - completion) | ||
return tf.reduce_mean(loss) | ||
|
||
|
||
def calc_d_loss(self, real, fake): | ||
alpha = 4e-4 | ||
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real, labels=tf.ones_like(real))) | ||
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake, labels=tf.zeros_like(fake))) | ||
return tf.add(d_loss_real, d_loss_fake) * alpha | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import numpy as np | ||
import tensorflow as tf | ||
from PIL import Image, ImageFilter | ||
import tqdm | ||
from model_mosaic import Model | ||
import load | ||
|
||
IMAGE_SIZE = 128 | ||
LOCAL_SIZE = 64 | ||
HOLE_MIN = 24 | ||
HOLE_MAX = 48 | ||
MOSAIC_MIN = 8 #Minimum number of mosaic squares across image | ||
MOSAIC_MAX = 32 #Maximum number of mosaic squares across image | ||
MOSAIC_GAUSSIAN_P = 0.5 #represent images that have been compressed post-mosaic | ||
MOSAIC_GAUSSIAN_MIN = 0.2 | ||
MOSAIC_GAUSSIAN_MAX = 1.2 | ||
LEARNING_RATE = 1e-3 | ||
BATCH_SIZE = 16 | ||
PRETRAIN_EPOCH = 100 | ||
|
||
def train(): | ||
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) | ||
mosaic = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) | ||
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1]) | ||
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3]) | ||
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) | ||
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3]) | ||
is_training = tf.placeholder(tf.bool, []) | ||
|
||
model = Model(x, mosaic, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE) | ||
sess = tf.Session() | ||
global_step = tf.Variable(0, name='global_step', trainable=False) | ||
epoch = tf.Variable(0, name='epoch', trainable=False) | ||
|
||
opt = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE) | ||
g_train_op = opt.minimize(model.g_loss, global_step=global_step, var_list=model.g_variables) | ||
d_train_op = opt.minimize(model.d_loss, global_step=global_step, var_list=model.d_variables) | ||
|
||
init_op = tf.global_variables_initializer() | ||
sess.run(init_op) | ||
|
||
if tf.train.get_checkpoint_state('./models'): | ||
saver = tf.train.Saver() | ||
saver.restore(sess, './models/latest') | ||
|
||
x_train, x_test = load.load() | ||
x_train = np.array([a / 127.5 - 1 for a in x_train]) | ||
x_test = np.array([a / 127.5 - 1 for a in x_test]) | ||
|
||
step_num = int(len(x_train) / BATCH_SIZE) | ||
|
||
while True: | ||
sess.run(tf.assign(epoch, tf.add(epoch, 1))) | ||
print('epoch: {}'.format(sess.run(epoch))) | ||
|
||
np.random.shuffle(x_train) | ||
|
||
# Completion | ||
if sess.run(epoch) <= PRETRAIN_EPOCH: | ||
g_loss_value = 0 | ||
for i in tqdm.tqdm(range(step_num)): | ||
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE] | ||
points_batch, mask_batch = get_points() | ||
mosaic_batch = get_mosaic(x_batch) | ||
|
||
_, g_loss = sess.run([g_train_op, model.g_loss], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: True}) | ||
g_loss_value += g_loss | ||
|
||
print('Completion loss: {}'.format(g_loss_value)) | ||
|
||
f = open("loss.csv","a+") | ||
f.write(str(sess.run(epoch)) + "," + str(g_loss_value) + "," + "0" + "\n") | ||
f.close() | ||
|
||
np.random.shuffle(x_test) | ||
x_batch = x_test[:BATCH_SIZE] | ||
mosaic_batch = get_mosaic(x_batch) | ||
merged, completion = sess.run([model.merged, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: False}) | ||
sample = np.array((merged[0] + 1) * 127.5, dtype=np.uint8) | ||
result = Image.fromarray(sample) | ||
result.save('./training_output_images/{}_0.png'.format("{0:06d}".format(sess.run(epoch)))) | ||
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8) | ||
result = Image.fromarray(sample) | ||
result.save('./training_output_images/{}_1.png'.format("{0:06d}".format(sess.run(epoch)))) | ||
|
||
saver = tf.train.Saver() | ||
saver.save(sess, './models/latest', write_meta_graph=False) | ||
if sess.run(epoch) == PRETRAIN_EPOCH: | ||
saver.save(sess, './models/pretrained', write_meta_graph=False) | ||
|
||
|
||
# Discrimitation | ||
else: | ||
g_loss_value = 0 | ||
d_loss_value = 0 | ||
for i in tqdm.tqdm(range(step_num)): | ||
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE] | ||
points_batch, mask_batch = get_points() | ||
mosaic_batch = get_mosaic(x_batch) | ||
|
||
_, g_loss, completion = sess.run([g_train_op, model.g_loss, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: True}) | ||
g_loss_value += g_loss | ||
|
||
local_x_batch = [] | ||
local_completion_batch = [] | ||
for i in range(BATCH_SIZE): | ||
x1, y1, x2, y2 = points_batch[i] | ||
local_x_batch.append(x_batch[i][y1:y2, x1:x2, :]) | ||
local_completion_batch.append(completion[i][y1:y2, x1:x2, :]) | ||
local_x_batch = np.array(local_x_batch) | ||
local_completion_batch = np.array(local_completion_batch) | ||
|
||
_, d_loss = sess.run( | ||
[d_train_op, model.d_loss], | ||
feed_dict={x: x_batch, mask: mask_batch, local_x: local_x_batch, global_completion: completion, local_completion: local_completion_batch, is_training: True}) | ||
d_loss_value += d_loss | ||
|
||
print('Completion loss: {}'.format(g_loss_value)) | ||
print('Discriminator loss: {}'.format(d_loss_value)) | ||
|
||
np.random.shuffle(x_test) | ||
x_batch = x_test[:BATCH_SIZE] | ||
mosaic_batch = get_mosaic(x_batch) | ||
merged, completion = sess.run([model.merged, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: False}) | ||
sample = np.array((merged[0] + 1) * 127.5, dtype=np.uint8) | ||
result = Image.fromarray(sample) | ||
result.save('./training_output_images/{}_0.png'.format("{0:06d}".format(sess.run(epoch)))) | ||
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8) | ||
result = Image.fromarray(sample) | ||
result.save('./training_output_images/{}_1.png'.format("{0:06d}".format(sess.run(epoch)))) | ||
|
||
saver = tf.train.Saver() | ||
saver.save(sess, './models/latest', write_meta_graph=False) | ||
|
||
|
||
def get_points(): | ||
points = [] | ||
mask = [] | ||
for i in range(BATCH_SIZE): | ||
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2) | ||
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE | ||
points.append([x1, y1, x2, y2]) | ||
|
||
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2) | ||
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w) | ||
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h) | ||
p2 = p1 + w | ||
q2 = q1 + h | ||
|
||
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8) | ||
m[q1:q2 + 1, p1:p2 + 1] = 1 | ||
mask.append(m) | ||
|
||
return np.array(points), np.array(mask) | ||
|
||
|
||
def get_mosaic(x_batch): | ||
mosaic = [] | ||
for i in range(BATCH_SIZE): | ||
im = np.array((x_batch[i] + 1) * 127.5, dtype=np.uint8) | ||
im = Image.fromarray(im) | ||
size = np.random.randint(MOSAIC_MIN, MOSAIC_MAX) | ||
im = im.resize((size,size),Image.LANCZOS) | ||
im = im.resize((IMAGE_SIZE,IMAGE_SIZE),Image.NEAREST) | ||
if np.random.rand() < MOSAIC_GAUSSIAN_P: | ||
im = im.filter(ImageFilter.GaussianBlur(np.random.uniform(MOSAIC_GAUSSIAN_MIN, MOSAIC_GAUSSIAN_MAX))) | ||
|
||
mosaic.append(np.array(im)) | ||
|
||
mosaic = np.array([a / 127.5 - 1 for a in mosaic]) | ||
return mosaic | ||
|
||
|
||
if __name__ == '__main__': | ||
train() | ||
|