Skip to content

StanislavPy/DupBERT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DupBERT

DupBERT is a siamese neural network based on BERT helping to classify texts with similar meaning as duplicates. The package utilises Catalyst (PyTorch framework for Deep Learning Research and Development) and can be easily run with different neural architectures.

Installation

The current realisation is fully tested with python=3.9.

# Installation
git clone 
cd DupBERT 
pip install -r requirements.txt

The artchitecture

The model architecture is as following:

  • BERT encoder. Each text in triplet is passed to encoder where input_ids & attention mask are extracted.
  • Convolution layers. Each encoded text's separately fed to the shared CNN layers and MaxPooled.
  • Fully Connected layers. The output of CNN layers area concatenated and passed to the fully connected layers with sigmoid activation function.

Model parameters

For convenience all parameters are stored in the config/config.yaml file. This file can be used to safely run previously trained model with all the prepocessing parameters.

Text preprocessing

Each text runs through three stages: TextTokenizer, Encoder, and PadSequencer. TextTokenizer is tested with English, and Russian languages. It has multiple checks for the invalid simbols, words that sticked together, and many other cases.

Examples

Please review the example notebook for reference. The example data used is taken from https://www.kaggle.com/c/quora-question-pairs.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published