Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bugs in tsvd #24

Merged
merged 7 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions include/sparseir/_linalg.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -266,6 +266,9 @@ void reflectorApply(Eigen::VectorBlock<Eigen::Block<Eigen::MatrixX<T>, -1, 1, tr
}
}

/*
A will be modified in-place.
*/
template <typename T>
std::pair<QRPivoted<T>, int> rrqr(MatrixX<T>& A, T rtol = std::numeric_limits<T>::epsilon()) {
using std::abs;
Expand Down Expand Up @@ -491,11 +494,12 @@ truncateQRResult(const Eigen::MatrixX<T>& Q, const Eigen::MatrixX<T>& R, int k)
// Truncated SVD (TSVD)
template <typename T>
std::tuple<Eigen::MatrixX<T>, Eigen::VectorX<T>, Eigen::MatrixX<T>>
tsvd(Eigen::MatrixX<T>& A, T rtol = std::numeric_limits<T>::epsilon()) {
tsvd(const Eigen::MatrixX<T>& A, T rtol = std::numeric_limits<T>::epsilon()) {
// Step 1: Apply RRQR to A
QRPivoted<T> A_qr;
int k;
std::tie(A_qr, k) = rrqr<T>(A, rtol);
Eigen::MatrixX<T> A_ = A; // create a copy of A
std::tie(A_qr, k) = rrqr<T>(A_, rtol);
// Step 2: Truncate QR Result to rank k
auto tqr = truncate_qr_result<T>(A_qr, k);
auto p = A_qr.jpvt;
Expand All @@ -511,16 +515,22 @@ tsvd(Eigen::MatrixX<T>& A, T rtol = std::numeric_limits<T>::epsilon()) {
// Do not use the svd_jacobi function directly.
// Better to write a wrrapper function for the SVD.
Eigen::JacobiSVD<decltype(R_trunc)> svd;

// The following comment is taken from Julia's implementation
// # RRQR is an excellent preconditioner for Jacobi. One should then perform
// # Jacobi on RT
svd.compute(R_trunc.transpose(), Eigen::ComputeThinU | Eigen::ComputeThinV);

// Reconstruct A from QR factorization
Eigen::PermutationMatrix<Dynamic, Dynamic> perm(p.size());
perm.indices() = invperm(p);
perm.indices() = p;

Eigen::MatrixX<T> U = Q_trunc * svd.matrixV();
// implement invperm
Eigen::MatrixX<T> V = (perm * svd.matrixU());

Eigen::VectorX<T> s = svd.singularValues();
// TODO: Create a return type for truncated SVD
return std::make_tuple(U, s, V);
}

Expand Down
55 changes: 30 additions & 25 deletions test/_linalg.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -256,7 +256,10 @@ TEST_CASE("RRQR Trunc", "[linalg]") {
auto QR = truncate_qr_result<DDouble>(A_qr, k);
auto Q = QR.first;
auto R = QR.second;

REQUIRE(Q.rows() == m);
REQUIRE(Q.cols() == k);
REQUIRE(R.rows() == k);
REQUIRE(R.cols() == n);
MatrixX<DDouble> A_rec = Q * R * getPropertyP(A_qr).transpose();
REQUIRE(A_rec.isApprox(Aorig, 1e-5 * A.norm()));
}
Expand All @@ -266,43 +269,45 @@ TEST_CASE("TSVD", "[linalg]") {
using std::pow;
// double
{
for (auto tol : {1e-14, 1e-13}) {
VectorX<double> x = VectorX<double>::LinSpaced(201, -1, 1);
MatrixX<double> Aorig(201, 51);
for (auto tol : {1e-14}) {
int N1 = 201;
int N2 = 51;
VectorX<double> x = VectorX<double>::LinSpaced(N1, -1, 1);
//MatrixX<double> Aorig(201, 51);
MatrixX<double> Aorig(N1, N2);
for (int i = 0; i < Aorig.cols(); i++) {
//Aorig.col(i) = x.array().pow(i);
for (int j = 0; j < Aorig.rows(); j++) {
Aorig(j, i) = pow(x(j), i);
}
Aorig.col(i) = x.array().pow(i);
//for (int j = 0; j < Aorig.rows(); j++) {
//Aorig(j, i) = pow(x(j), i);
//}
}

MatrixX<double> A = Aorig;
MatrixX<double> A = Aorig; // create a copy of Aorig

auto tsvd_result = tsvd<double>(A, double(tol));
tsvd<double>(Aorig, double(tol));
auto U = std::get<0>(tsvd_result);
auto s = std::get<1>(tsvd_result);
auto V = std::get<2>(tsvd_result);
int k = s.size();

auto S_diag = s.asDiagonal();
// U * S_diag * V.transpose();
// std::cout << "U: " << U.rows() << "," << U.cols() << std::endl;
// std::cout << "S: " << S_diag.rows() << "," << S_diag.cols() << std::endl;
// std::cout << "V: " << V.rows() << "," << V.cols() << std::endl;
auto B = U * S_diag * V.transpose() - Aorig;
std::cout << Aorig.norm() << std::endl; // Oh...?
std::cout << B.norm() << std::endl; // Oh...?
bool test_completed = false;
REQUIRE(!test_completed);
//REQUIRE((U * S_diag * V).isApprox(Aorig, tol * A.norm()));
/*
auto Areconst = U * S_diag * V.transpose();
auto diff = (A - Areconst).norm() / A.norm();
// std::cout << "diff " << diff << std::endl;
// std::cout << "Areconst " << Areconst.norm() << std::endl;
// std::cout << "Aorig " << Aorig.norm() << std::endl;
// std::cout << "norm diff" << Aorig.norm() - Areconst.norm() << std::endl;

REQUIRE(Areconst.isApprox(Aorig, tol * Aorig.norm()));
REQUIRE((U.transpose() * U).isIdentity());
REQUIRE((V.transpose() * V).isIdentity());
REQUIRE(std::is_sorted(S.data(), S.data() + S.size(), std::greater<DDouble>()));
REQUIRE(std::is_sorted(s.data(), s.data() + s.size(), std::greater<DDouble>()));
REQUIRE(k < std::min(A.rows(), A.cols()));

Eigen::JacobiSVD<MatrixX<DDouble>> svd(A.cast<DDouble>());
REQUIRE(S.isApprox(svd.singularValues().head(k).cast<DDouble>()));
*/
Eigen::JacobiSVD<MatrixX<double>> svd(Aorig.cast<double>());
REQUIRE(s.isApprox(svd.singularValues().head(k)));
REQUIRE(S_diag.toDenseMatrix().isApprox(svd.singularValues().head(k).asDiagonal().toDenseMatrix()));
}
}
}
Expand Down Expand Up @@ -382,7 +387,7 @@ TEST_CASE("SVD of VERY triangular 2x2", "[linalg]") {
REQUIRE(cu.hi() == 1.0);
REQUIRE(su.hi() == 1e-100);
REQUIRE(smax.hi() == 1.0);
REQUIRE(smin.hi() == 1e-200); // so cloe
REQUIRE(smin.hi() == 1e-200);
REQUIRE(cv.hi() == 1e-100);
REQUIRE(sv.hi() == 1.0);
U << cu, -su, su, cu;
Expand Down
2 changes: 1 addition & 1 deletion test/freq.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ TEST_CASE("freq", "[Imaginary value calculation for MatsubaraFreq]")
double beta = 3.0;
BosonicFreq bf(2);
std::complex<double> expected_value_im(0, 2 * M_PI / beta);
std::cout << bf.value_im(beta) << std::endl;
// std::cout << bf.value_im(beta) << std::endl;
REQUIRE(bf.value_im(beta) == expected_value_im);
}

Expand Down