pip3 install pyepsilla
or
pip3 install --upgrade pyepsilla
docker pull epsilla/vectordb
docker run -d -p 8888:8888 epsilla/vectordb
from pyepsilla import vectordb
## connect to vectordb
client = vectordb.Client(
host='localhost',
port='8888'
)
## load and use a database
client.load_db(db_name="MyDB", db_path="/tmp/epsilla")
client.use_db(db_name="MyDB")
## create a table in the current database
client.create_table(
table_name="MyTable",
table_fields=[
{"name": "ID", "dataType": "INT"},
{"name": "Doc", "dataType": "STRING"},
{"name": "Embedding", "dataType": "VECTOR_FLOAT", "dimensions": 4}
]
)
## insert records
client.insert(
table_name="MyTable",
records=[
{"ID": 1, "Doc": "Berlin", "Embedding": [0.05, 0.61, 0.76, 0.74]},
{"ID": 2, "Doc": "London", "Embedding": [0.19, 0.81, 0.75, 0.11]},
{"ID": 3, "Doc": "Moscow", "Embedding": [0.36, 0.55, 0.47, 0.94]},
{"ID": 4, "Doc": "San Francisco", "Embedding": [0.18, 0.01, 0.85, 0.80]},
{"ID": 5, "Doc": "Shanghai", "Embedding": [0.24, 0.18, 0.22, 0.44]}
]
)
## search
status_code, response = client.query(
table_name="MyTable",
query_field="Embedding",
query_vector=[0.35, 0.55, 0.47, 0.94],
limit=2
)
print(response)
## drop a table
client.drop_table("MyTable")
## unload a database from memory
client.unload_db("MyDB")